EGU23-3863
https://doi.org/10.5194/egusphere-egu23-3863
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sand properties investigation at Meridiani Planum, Mars

Joanna Kozakiewicz1, Maciej Kania2, Dorota Salata2, and Leszek Nowak1
Joanna Kozakiewicz et al.
  • 1Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland, (j.kozakiewicz@uj.edu.pl)
  • 2Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Krakow, Poland

Granulometry, shape, and chemical composition analyses of the sediments studied by the Opportunity rover along its entire 45-km-long traverse have been used to classify sediments and provide information about their origin and depositional processes.

We have conducted granulometry and shape analyses of 179 sediment targets visible in MI images [1]. To facilitate the analyses, we have used the PADM algorithm - a semi-automatic tool for particle detection, measurement, and analysis [2]. This allowed identification of more than 70000 individual grains. For chemical composition analysis we used APXS data of 62 sediment targets [3]. The normative mineral composition was calculated from APXS according to the CIPW procedure to calculate the estimated density of the material and to classify in QAPF system.

The analyses show five deposit classes: i) dust with very fine sand enriched in sulphur, ii) fine basaltic sand, iii) coarse sand enriched in iron, found only on the plains, iv) gravel enriched in iron, also found on the plains, and iv) gravel with a typical for basalts amount of iron, found at the Endeavour crater rim. These classes occur in the following geomorphological settings: i) dust mixed with very fine sand is common on the leeward side of topographical obstacles, ii) fine sand is present in depressions, iii) coarse sand is related to coarse-grained ripples fields, iv) gravel occur as a lag deposit, especially in coarse-grained ripple troughs and at crater rims and outcrops.

The typical diameter of grains for the fine sand is 0.13 mm, and for the coarse sand - 1.20 mm. The best sorted coarse sands were found on the slopes and the crests of coarse-grained ripples. In most cases, the normative mineral composition of deposits fits in the basalt/andesite field of the QAPF classification. The coarse sand found in coarse-grained ripples was characterized by the highest content of iron and shows the most mafic composition in the QAPF diagram. This deviation from the basalt composition is related to iron-rich spherules (a frequent component of the gravel) than to a more mafic type of rock. On the other hand, the coarse sand grains found in ripple fields were characterized by lower roundness than the iron-rich spherules. Therefore, many of the transported by wind coarse sand grains had their origin in partial fragmentation of iron-rich spherules.

The work was funded by the Anthropocene Priority Research Area budget under the program "Excellence Initiative – Research University" at the Jagiellonian University.

[1] Herkenhoff, K. E. (2003) MER1 Microscopic Imager Science Calibrated Data Bundle. PDS Geosciences Node. DOI: 10.17189/1519006

[2] Kozakiewicz, J. (2018). Image Analysis Algorithm for Detection and Measurement of Martian Sand Grains. Earth Science Informatics, 11, 257-272. DOI: 10.1007/s12145-018-0333-y

[3] Gellert, R. (2009). MER APXS Derived Oxide Data Bundle. PDS Geosciences (GEO) Node. DOI: 10.17189/1518973

How to cite: Kozakiewicz, J., Kania, M., Salata, D., and Nowak, L.: Sand properties investigation at Meridiani Planum, Mars, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3863, https://doi.org/10.5194/egusphere-egu23-3863, 2023.