EGU23-3880
https://doi.org/10.5194/egusphere-egu23-3880
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Seismic signature of carbonate fault rocks changes with changing petrophysical properties: insights from unmigrated seismic forward modelling

Andrea Tomassi1,2, Fabio Trippetta1, and Roberto de Franco3
Andrea Tomassi et al.
  • 1Sapienza University of Rome, Earth Sciences Department , Roma, Italy
  • 2Uninettuno International Telematic University, Faculty of Engineering, Roma, Italy
  • 3Istituto di Geologia Ambientale e Geoingegneria, CNR, Milano, Italy

The most common method of detecting subsurface structures on continental and marine surfaces is seismic imaging. Although technological advancements have been made, seismic analysis of carbonates remains challenging due to their strong petrophysical heterogeneity, which becomes more challenging when faults are incorporated. This work aims to produce unmigrated forward-seismic models to grasp the deformation behavior of carbonate-bearing fault systems and the related seismic response changes. The porous and faulted carbonates outcropping at the Majella Massif (central Italy) are here used as case study as an analogue of carbonate ramp reservoirs exploited worldwide. Field and laboratory petrophysical data of fault rocks collected at increasing distances from the fault planes show a damage zone/fault core architecture characterized by a decreasing porosity and an increase in shear modulus moving from host rocks towards fault planes. Starting from these observations, unmigrated stacked seismic models have been built simulating fault zones with both increased and decreased porosities with respect to the host rocks. Fault zones with lower porosity than the host rock show slight diffraction hyperbolas, while the diffractive component is pronounced in seismic images of fault rocks with higher porosity than the host rock. Such hyperbolas can be enhanced or weakened by modifying the dip angle of the fault plane or the width of the damage zone but a key role seems to be played by the decreased porosity. The existence of diffraction hyperbolas in unmigrated seismic models is then interpreted as evidence of a damage zone characterized by larger porosity compared to the host rock. Migrated stacked sections would not provide any evidence of increased porosity in the damage zone due to loss of information about the diffractive component resulting from the processing. Consequently, the absence of diffraction hyperbolas in actual unmigrated seismic images is suggested to be related to a decreased porosity in the fault zone. This can be related to cataclasis and solution/cementation of the damage zone rocks as observed in the study area, and related to confining stress acting at depth or fracture filling that counteracts the fracture-related increase in secondary porosity. On the other hand, diffraction hyperbolas in unmigrated seismic images can represent a clue of the presence of large-porosity fault zones.

How to cite: Tomassi, A., Trippetta, F., and de Franco, R.: Seismic signature of carbonate fault rocks changes with changing petrophysical properties: insights from unmigrated seismic forward modelling, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3880, https://doi.org/10.5194/egusphere-egu23-3880, 2023.