How well do global snow products characterize snow storage in High Mountain Asia?
- 1China Institute of Water Resources and Hydropower Research, Beijing, China (liuyufei@iwhr.com)
- 2Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA
Accurate characterization of peak snow water storage is essential for assessing warm-season water availability in regions reliant on snowmelt-driven runoff. However, knowledge of peak snow water storage in data-sparse regions, such as High Mountain Asia (HMA), is still lacking due to overreliance on model-based estimates. Here, estimates of peak snow storage from eight global snow products were evaluated over HMA, using a newly developed High Mountain Asia Snow Reanalysis (HMASR) dataset as a reference. The particular focus of this work was on peak annual snow storage, as it is the first-order determinant of warm-season water supply in snow-dominated basins.
The results suggest large uncertainty in the eight global snow products in High Mountain Asia, with the climatological peak storage found to be 161 km3 ± 102 km3 across products. Compared to HMASR, most global snow products underestimate peak snow storage in HMA, with an average 33% underestimation. Large inter-product variability in cumulative snowfall (335 km3 ± 148 km3) is found to explain most of the peak snow storage uncertainty (>80%). Significant snowfall loss to ablation during accumulation season (51% ± 9%) also plays an important role in peak snow storage uncertainty, and deserves more investigation in future work.
How to cite: Liu, Y., Fang, Y., Li, D., and Margulis, S. A.: How well do global snow products characterize snow storage in High Mountain Asia?, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4012, https://doi.org/10.5194/egusphere-egu23-4012, 2023.