EGU23-4025, updated on 22 Feb 2023
https://doi.org/10.5194/egusphere-egu23-4025
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Chemistry-Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/fog Prediction in China

Hong Wang
Hong Wang
  • Chinese Academy of Meteorological Sciences, Beijing, China (wangh@cma.gov.cn)

The Chinese Meteorology Administration chemistry model CUACE is online integrated into the mesoscale operational weather prediction (NWP) model (GRAPES_Meso5.1) and aerosol-cloud-radiation interaction is achieved to establish the first version (V1) of chemistry-weather (CW) interacted model GRAPES-Meso5.1/CUACE CW V1. The most polluted winter 2016-2017 is selected to study the meteorology impacts on haze/fog prediction, the impact of aerosol-radiation, aerosol-cloud and CW interaction (ARI, ACI, CWI) on haze/fog prediction and NWP. Single way model without CWI displays reasonable PM 2.5 and visibility prediction in general. However, modeled PM2.5 peaks are underestimated and visibility valleys are overestimated during haze/fog pollution, the underestimation of relative humidity (RH) contributes major to this misestimation; CWI model cut the negative bias of PM 2.5 peaks and the positive bias of visibility valleys. The improvement of 5km and 3km low visibility by CWI during severe haze/fog period is more obvious than that of 10 km, which just compensates for the largest deficiency in low visibility prediction related with severe haze/fog by single way model; The NWP including sea level pressures, relative humidity(RH), temperature, wind speed are also improved by CWI from surface to upper troposphere; ARI contributes larger to the predicted PM2.5 ,visibility and NWP improvement than that of ACI, their relative contributions varies with model vertical height and the overlapping condition of cloud and aerosols. Due to the joint contribution of RH and PM2.5, CWI’s improving on visibility is larger than PM2.5. This study illustrates the importance of including CWI in air quality prediction model.

How to cite: Wang, H.: Chemistry-Weather Interacted Model System GRAPES_Meso5.1/CUACE CW V1.0: Development, Evaluation and Application in Better Haze/fog Prediction in China, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4025, https://doi.org/10.5194/egusphere-egu23-4025, 2023.