EGU23-4502
https://doi.org/10.5194/egusphere-egu23-4502
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Coronal Diagnostics of Solar Type-III Radio Bursts Using LOFAR and PSP Observations

Mohamed Nedal1, Kamen Kozarev1, Peijin Zhang1, and Pietro Zucca2
Mohamed Nedal et al.
  • 1Institute of Astronomy with National Astronomical Institute, Bulgarian Academy of Sciences, Solar Physics, Sofia, Bulgaria (mnedal@astro.bas.bg)
  • 2ASTRON Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands

Understanding the physical processes underlying solar radio bursts requires both high- and low-frequency observations, as well as imaging capabilities. In this study, we implement a fully automated approach to detect and characterize type III radio bursts, image their sources in the corona, and characterize the plasma environment where the bursts are triggered. We utilize data from the Low-Frequency Array (LOFAR) and the Parker Solar Probe (PSP) to investigate several type-III radio bursts that occurred on April 3, 2019. Through data pre-processing and combining the LOFAR and PSP dynamic spectra, we study the solar radio emissions between 2.6 kHz and 80 MHz. By extracting the frequency drift and speed of the accelerated electron beams, we gain insight into the physical processes driving these bursts. Additionally, by using LOFAR interferometric observations to image the sources of the radio emission at multiple frequencies, we are able to determine the locations and kinematics of the sources in the corona. We also use Potential Field Source Surface (PFSS) modeling and magnetohydrodynamic (MHD) simulation results to determine the magnetic field configuration and plasma parameters in the vicinity of the moving emission sources. These observations and analysis provide valuable constraints on the coronal conditions that trigger solar radio bursts.

How to cite: Nedal, M., Kozarev, K., Zhang, P., and Zucca, P.: Coronal Diagnostics of Solar Type-III Radio Bursts Using LOFAR and PSP Observations, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4502, https://doi.org/10.5194/egusphere-egu23-4502, 2023.