Contrasting patterns in the temperature dependence of wetland CH4 and CO2 emissions across globally geographic climate gradients
- Northeast Forestry University, Harbin, China (chenhongyang0629@163.com)
Determining the temperature dependence of wetland CH4 and CO2 emissions is critical for predicting the impacts of climate change on greenhouse gas (GHGs) emissions in wetland ecosystems. However, the spatial variation for temperature dependence of wetland CH4 and CO2 emissions is poorly understood, especially at the global scale. Here, we investigate the temperature dependencies of wetland CH4 and CO2 emissions across large-scale climatic gradients using 56,271 daily paired observations of ecosystem-level CH4 and CO2 emissions in 45 widely distributed wetlands from the FLUXNET-CH4 database. The temperature dependencies of CH4 and CO2 emissions show contrasting spatial patterns across globally geographic climate gradients. Specifically, the temperature dependence of CH4 emissions increased with increasing mean annual temperature (MAT), but the opposite was true for that of CO2 emissions. The ratio of CH4 to CO2 emissions was positively dependent on temperature when only MAT and mean annual precipitation were greater than 4.7 °C and 483 mm, respectively. Our results imply that the relative contribution of CH4 to total GHG emissions increases with ambient temperature increases in a warmer and wetter climate region and could act as a positive feedback mechanism in the future.
How to cite: Chen, H. and Zhou, X.: Contrasting patterns in the temperature dependence of wetland CH4 and CO2 emissions across globally geographic climate gradients, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4684, https://doi.org/10.5194/egusphere-egu23-4684, 2023.