EGU23-4710
https://doi.org/10.5194/egusphere-egu23-4710
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Controls on the Dynamics of Subducting Slabs in a 3-D Spherical Shell Domain

Rhodri Davies1, Fangqin Chen1, Saskia Goes2, and Lior Suchoy2
Rhodri Davies et al.
  • 1Research School of Earth Sciences, The Australian National University, Canberra, Australia.
  • 2Department of Earth Science and Engineering, Imperial College London, London, UK.

It has long been recognised that the shape of subduction zones is influenced by Earth’s sphericity, but the effects of sphericity are regularly neglected in numerical and laboratory studies that examine the factors controlling subduction dynamics: most existing studies have been executed in a Cartesian domain, with the small number of simulations undertaken in a spherical shell incorporating plates with an oversimplified rheology, limiting their applicability. There are therefore many outstanding questions relating to the key controls on the dynamics of subduction. For example, do predictions from Cartesian subduction models hold true in a spherical geometry? When combined, how do subducting plate age and width influence the dynamics of subducting slabs, and associated trench shape? How do relic slabs in the mantle feedback on the dynamics of subduction? These questions are of great importance to understanding the evolution of Earth's subduction systems but remain under explored.

In this presentation, we will target these questions through a systematic geodynamic modelling effort, by examining simulations of multi-material free-subduction of a visco-plastic slab in a 3-D spherical shell domain. We will first highlight the limitation(s) of Cartesian models, due to two irreconcilable differences with the spherical domain: (i) the presence of sidewall boundaries in Cartesian models, which modify the flow regime; and (ii) the reduction of space with depth in spherical shells, alongside the radial gravity direction, the impact of which cannot be captured in Cartesian domains, especially for subduction zones exceeding 2400 km in width. We will then demonstrate how slab age (approximated by co-varying thickness and density) and slab width affect the evolution of subducting slabs, using spherical subduction simulations, showing that: (i) as subducting plate age increases, slabs retreat more and subduct at a shallower dip angle, due to increased bending resistance and sinking rates; (ii) wider slabs can develop along-strike variations in trench curvature due to toroidal flow at slab edges, trending toward a `W'-shaped trench with increasing slab width, and (iii) the width effect is strongly modulated by slab age, as age controls the slab's tendency to retreat. Finally, we will show the diverse range of ways in which remnant slabs in the mantle impact on subduction dynamics and the evolution of subduction systems.

How to cite: Davies, R., Chen, F., Goes, S., and Suchoy, L.: Controls on the Dynamics of Subducting Slabs in a 3-D Spherical Shell Domain, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4710, https://doi.org/10.5194/egusphere-egu23-4710, 2023.