EGU23-4850, updated on 31 Mar 2023
https://doi.org/10.5194/egusphere-egu23-4850
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and validation of a global 1/32° surface wave-tide-circulation coupled ocean model: FIO-COM32

Bin Xiao, Fangli Qiao, Qi Shu, Xunqiang Yin, Guansuo Wang, and Shihong Wang
Bin Xiao et al.
  • First Institute of Oceanography, MNR, China, Qingdao, China (xiaobin@fio.org.cn)

Model resolution and the included physical processes are two of the most important factors those determine the realism or performance of ocean model simulations. In this study, a new global surface wave-tide-circulation coupled ocean model FIO-COM32 with a resolution of 1/32°×1/32° is developed and validated. Promotion of the horizontal resolution from 1/10° to 1/32° leads to significant improvements in the simulations of surface eddy kinetic energy (EKE), main paths of the Kuroshio and Gulf Stream, and the global tides. We propose the Integrated Circulation Route Error (ICRE) as a quantitative criteria to evaluate the simulated main paths of Kuroshio and Gulf Stream. The non-breaking surface wave-induced mixing (Bv) is proven to still be an important contributor that improves the agreement of the simulated summer mixed layer depth (MLD) against the Argo observations even with a very high horizontal resolution of 1/32°. The mean error of the simulated mid-latitude summer MLD is reduced from -4.8 m in the numerical experiment without Bv to -0.6 m in experiment with Bv. By including the global tide, the global distributions of internal tide can be explicitly simulated in this new model and are comparable to the satellite observations. Based on Jason3 along-track sea surface height (SSH), wave number spectral slopes of mesoscale ranges and wave number-frequency analysis show that the unbalanced motions, mainly internal tides and inertia-gravity waves, induced SSH undulation is a key factor for the substantially improved agreement between model and satellite observations in the low latitudes and low EKE regions. For ocean model community, surface waves, tidal currents and ocean general circulations have been separated artificially into different streams for more than half a century. This paper demonstrates that it should be the time to merge these three streams for new generation ocean model development.

How to cite: Xiao, B., Qiao, F., Shu, Q., Yin, X., Wang, G., and Wang, S.: Development and validation of a global 1/32° surface wave-tide-circulation coupled ocean model: FIO-COM32, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4850, https://doi.org/10.5194/egusphere-egu23-4850, 2023.