EGU23-4887
https://doi.org/10.5194/egusphere-egu23-4887
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

IMERG Run Deep: Can we produce a low-latency IMERG Final run product with a deep learning based prediction model?

Ho Tin Hung and Li-Pen Wang
Ho Tin Hung and Li-Pen Wang
  • National Taiwan University, College of Engineering, Civil Engineering, Taipei, Taiwan (b08501134@ntu.edu.tw)

IMERG is a global satellite-based precipitation dataset, produced by NASA. It has provided valuable rainfall information to facilitate the design or the operation of the disaster and risk management worldwide. In operation, NASA offers three types of IMERG Level 3 (L3) products, with different levels of trade-offs in terms of time latency and accuracy. These are Early run (4-hour latency), Late run (14-hour latency) and Final run(3.5-month latency). The final-run product integrates multi-sensor retrievals and provides the highest-quality precipitation estimates among three IMERG products. It however suffers from a long processing latency, which hinders its applicability to near real-time applications. In the past 10 years, deep learning techniques have made significant breakthroughs in various scientific fields, including short-term rainfall forecasting. Deep learning models have shown to have the potential to learn the complex variations in weather systems and to outperform the Numerical Weather Prediction (NWP) in terms of short lead-time predictability and the required computational resources for operation.

 

In this research, we would like to explore the potential of deep learning (DL) in generating high-quality satellite-based precipitation product with low latency. More specifically, we investigate if DL models can learn the difference between Final- and Early-run products, and thus predict a Final-run-like product using Early-run product as input. Low-latency yet high-quality IMERG precipitation product can be therefore obtained. Various DL techniques are being tested in this work, including Auto-Encoder(AE), ConvLSTM and Deep Generative model. IMERG data between 2018 and 2020 over a rectangular area centred in the UK is used for model training and testing, and ground rain gauge records will be used to evaluate the performance of the original and predicted products. This pilot includes both ocean and land regions, which enables the comparison of the model performance between two different surface conditions. Preliminary analysis suggests that given patterns do exist in the differences between Early- and Final-run products, and the capacity of the selected DL models to learn the differences will be further investigated. The proposed work is of great potential to improve the applicability of IMERG products in an operational context.

How to cite: Hung, H. T. and Wang, L.-P.: IMERG Run Deep: Can we produce a low-latency IMERG Final run product with a deep learning based prediction model?, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4887, https://doi.org/10.5194/egusphere-egu23-4887, 2023.