EGU23-4947, updated on 22 Feb 2023
https://doi.org/10.5194/egusphere-egu23-4947
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Vertical distribution of radioactive cesium-rich microparticles in forest soil of Hamadori area, Fukushima Prefecture

Takahiro Tatsuno1, Hiromichi Waki2, Naoto Nihei3, and Nobuhito Ohte4
Takahiro Tatsuno et al.
  • 1Institute of Environmental Radioactivity, Fukushima University, Japan (t.tatsuno@ier.fukushima-u.ac.jp)
  • 2Graduate School of Informatics, Kyoto University, Japan (waki.hiromichi.54s@st.kyoto-u.ac.jp)
  • 3Faculty of Food and Agricultural Science, Fukushima University, Japan (nihei@agri.fukushima-u.ac.jp)
  • 4Graduate School of Informatics, Kyoto University, Japan (nobu@i.kyoto-u.ac.jp)

A lot of radionuclides were scattered after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Previous studies showed that there were FDNPP-derived radioactive cesium-rich microparticles (CsMPs) with the size of a few μm in the soil and river water around Fukushima Prefecture[1]. CsMPs have high radioactive cesium (Cs) concentration per unit mass, therefore they can be one of the factor in overestimating the Cs concentration in samples. Because Cs in CsMPs may not react directly with clay particles unlike the Cs ion in liquid phase, it is considered that CsMPs work as Cs carrier in soils[2]. However, unlike ionic Cs and Cs adsorbed onto clay particles, the distribution and dynamics of CsMPs in soils have not been clarified. In this study, we investigated vertical distribution of CsMPs in the forest soil and the soil properties in Fukushima Prefecture, Japan.

Soil samples were collected from the forest in the difficult-to-return zone, approximately 10 km away from the FDNPP. The undisturbed soil samples were collected from 0-35 cm soil depth at 5 cm intervals using core sampler to investigate soil properties. Furthermore, litter samples on the surface soil layer were collected. Using these samples, the vertical distribution of Cs concentration in the soil and Cs derived from CsMPs were investigated. Cs concentration in samples placed in 100 mL of U8 container was measured using a germanium semiconductor detector. Cs derived from CsMPs was evaluated using an Imaging plate with reference to the method ffor quantification of CsMPs[3].

Like Cs adsorbed on the soil, CsMPs were also mostly distributed in the soil surface layer between o and 5 cm of soil depth. We considered that straining may be one of the mechanism of CsMPs retention on the soil surface. Bradford et al. (2006) [4] showed that straining might be a significant mechanism for colloid retention when the average particle size in the porous medium is less than 200 times larger than the colloidal particle size. In this study, assuming the CsMPs size of approximately 1 µm, the average particle size of the soil collected from surface layer 0-5 cm was less than 200 times that of CsMPs. However, the average particle size decreased in deeper layer than 5 cm, therefore, it was considered that straining mechanism could be stronger.

This work was supported by FY2022 Sumitomo Foundation and FY2022 Internal Project of Institute of Environmental Radioactivity, Fukushima University.

 

References

[1] Igarashi, Y. et al., 2019. J. Environ. Radioact. 205–206, 101–118.

[2]  Tatsuno, T et al., 2022. J. Environ. Manage. 329, 116983.

[3] Ikehara et al., 2018. Environ. Sci. Technol. 52, 6390–6398.

[4] Bradford et al., 2003. Environ. Sci. Technol. 37, 2242–2250.

How to cite: Tatsuno, T., Waki, H., Nihei, N., and Ohte, N.: Vertical distribution of radioactive cesium-rich microparticles in forest soil of Hamadori area, Fukushima Prefecture, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-4947, https://doi.org/10.5194/egusphere-egu23-4947, 2023.