EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparability of Deep Learning Techniques for Calving Front Segmentation in SAR Imagery

Nora Gourmelon1, Thorsten Seehaus2, Matthias Braun2, Andreas Maier1, and Vincent Christlein1
Nora Gourmelon et al.
  • 1Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
  • 2Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Monitoring glacier change processes leads to a better understanding of how glaciers respond to various external forcings. For sub-annual remote sensing, Synthetic Aperture Radar (SAR) imagery is indispensable, as polar night and cloud cover limit the temporal continuity of optical imagery. Especially with the launch of the Sentinel-1 mission, the availability of suitable SAR imagery has increased substantially. This high amount of data leads to another challenge: Manual inspection is no longer feasible. Therefore, in recent years, many studies applied deep learning to automate the segmentation of calving fronts in satellite imagery. To ensure comparability between different deep learning models, they must be trained and tested on the same data with a predefined test set and evaluated with the same metrics. A dataset intended to be used for this purpose is called a benchmark dataset and needs to provide the ready-to-use satellite imagery and the corresponding calving front labels. Gourmelon et al. [1] provide such a dataset for SAR imagery of calving fronts called CaFFe ( CaFFe includes multi-mission data (ERS-1/2, RADARSAT 1, Envisat, ALOS, Sentinel-1A/B, TerraSAR-X, and TanDEM-X), providing a spatial resolution between 6 and 20 meters and covering the period from 1996 to 2020. It contains images of seven glaciers from Antarctica to Greenland and Alaska. For each of the 681 images contained in the benchmark, two labels are provided: One displaying the calving front versus background and the other showing different zones (ocean, rock outcrops, glacier area, and no information available). CaFFe is split into a train set and a predefined out-of-sample test set, which comprises all images from two of the seven glaciers. A split of the train set into training and validation is not specified, as different approaches like cross-validation shall be possible. The benchmark covers a wide variety of different conditions to capture the variability of SAR calving front images. For example, images with open oceans and images with ice-melange-covered oceans are included in the dataset. Especially including images featuring ice-melange is of great importance, as deep learning models have shown difficulties in accurately segmenting calving fronts under this condition. Including images with ice-melange in the train set helps models to learn accurate predictions even under these circumstances.  Adding such images to the test set ensures that evaluated models are able to cope with ice melange. The test set of CaFFe is specifically designed to be challenging, such that the generalizability of models to different conditions and spatial transferability even to other continents can be verified. Gourmelon et al. provide baselines (one for each of the available labels) complementing the benchmark dataset. Current collaborative work aims to evaluate recently published deep learning techniques for calving front extraction on CaFFe and compare it with the baselines.

[1] N. Gourmelon, T. Seehaus, M. Braun, A. Maier, and V. Christlein: "Calving Fronts and Where to Find Them: A Benchmark Dataset and Methodology for Automatic Glacier Calving Front Extraction from SAR Imagery," Earth System Science Data, vol. 14, no. 9, pp. 4287-4313, 2022, doi: 10.5194/essd-14-4287-2022.

How to cite: Gourmelon, N., Seehaus, T., Braun, M., Maier, A., and Christlein, V.: Comparability of Deep Learning Techniques for Calving Front Segmentation in SAR Imagery, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5069,, 2023.