EGU23-5254, updated on 14 May 2024
https://doi.org/10.5194/egusphere-egu23-5254
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

AI Assisted Data Selection of Laser Altimeter Observations

Oliver Stenzel, Lukas Maes, and Martin Hilchenbach
Oliver Stenzel et al.
  • Max Planck Institute for Solar System Research, Göttingen, Germany (stenzel@mps.mpg.de)

Laser altimeters create large amounts of data that often have to be preprocessed and checked before further use. The BepiColombo mission to Mercury is set to arrive in December 2025 and observations with the BepiColombo Laser Altimeter (BELA, (Benkhoff et al., 2010; Thomas et al., 2021)) will start during the following spring. These measurements are planned to be used to derive information about the tides of Mercury (Thor et al., 2020). Careful assessment, selection, and filtering on the raw data is needed to extract the small tidal signal. Until the BELA data becomes available artificial data and records from other missions have to be used to study the data selection strategy. We present our work on MESSENGER Laser Altimeter (MLA, (Cavanaugh et al., 2007)) using a convolutional neural network to sort observations on an orbit by orbit basis into different classes. The already existing neural network (Stenzel and Hilchenbach, 2021; Stenzel, Thor and Hilchenbach, 2021) is tuned and a new test data set is created.

 

Benkhoff, J. et al. (2010) ‘BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals’, Planetary and Space Science, 58(1), pp. 2–20. Available at: https://doi.org/10.1016/j.pss.2009.09.020.

Cavanaugh, J.F. et al. (2007) ‘The Mercury Laser Altimeter Instrument for the MESSENGER Mission’, Space Science Reviews, 131(1), pp. 451–479. Available at: https://doi.org/10.1007/s11214-007-9273-4.

Stenzel, O. and Hilchenbach, M. (2021) ‘Towards machine learning assisted error identification in orbital laser altimetry for tides derivation’, pp. EPSC2021-688. Available at: https://doi.org/10.5194/espc2021-688.

Stenzel, O., Thor, R. and Hilchenbach, M. (2021) ‘Error identification in orbital laser altimeter data by machine learning’, pp. EGU21-14749. Available at: https://doi.org/10.5194/egusphere-egu21-14749.

Thomas, N. et al. (2021) ‘The BepiColombo Laser Altimeter’, Space Science Reviews, 217(1), p. 25. Available at: https://doi.org/10.1007/s11214-021-00794-y.

Thor, R.N. et al. (2020) ‘Prospects for measuring Mercury’s tidal Love number h2 with the BepiColombo Laser Altimeter’, Astronomy & Astrophysics, 633, p. A85. Available at: https://doi.org/10.1051/0004-6361/201936517.

 

How to cite: Stenzel, O., Maes, L., and Hilchenbach, M.: AI Assisted Data Selection of Laser Altimeter Observations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5254, https://doi.org/10.5194/egusphere-egu23-5254, 2023.