Argo-based anthropogenic carbon concentration and inventory in the Labrador and Irminger Seas over 2011-2021
- 1Ifremer, University of Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), UMR6523, Centre de Bretagne, 29280 Plouzané, France
- 2Instituto Investigaciones Marinas (IIM, CSIC), calle Eduardo Cabello, 6, 36208, Vigo, Spain
The ocean is a net sink for a quater of the carbon dioxide emitted to the atmosphere by human industrial activities and land-use change (Cant). The North Atlantic Ocean encompasses the highest ocean storage capacity of Cant per unit area. In particular, the Labrador and Irminger Seas are two basins storing a high amount of Cant due to the deep convection activity taking place there. The temporal evolution of Cant concentration in these two basins and their Cant inventories in the 0-1800 depth layer are estimated over the period 2011-2021. The Cant values are estimated from Argo floats equipped with oxygen sensors, predictive neural networks (ESPER_NN and CONTENT) and a carbon-based back-calculation method (φCOT method). On average, Cant inventories are similar in the two basins and amount to 75.3 and 75.6 mol/m2 in the Irminger and Labrador seas, respectively. Over the study period, Cant inventories increase in the two basins at a storage rate of 1.01±0.14 mol/m2/yr in the Irminger Sea and 0.94±0.2 mol/m2/yr in the Labrador Sea. The processes involved in Cant evolution in the two basins are then investigated.
How to cite: Asselot, R., Carracedo, L. I., Thierry, V., Mercier, H., Velo, A., Bajon, R., and Pérez, F. F.: Argo-based anthropogenic carbon concentration and inventory in the Labrador and Irminger Seas over 2011-2021, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5422, https://doi.org/10.5194/egusphere-egu23-5422, 2023.