Comparison of urban canopy models (UCMs) over the area of Nicosia
- 1The Cyprus Institute, Nicosia, Cyprus (g.vurro@cyi.ac.cy)
- 2The Cyprus Institute, CARE-C, Nicosia, Cyprus
Climate change is posing a significant strain on society. The fast urbanization process, in addition to population growth and the constant rise in anthropogenic greenhouse gas emissions, exacerbates climate-induced phenomena. In this background, the EMME region, a climate change hotspot, emerges for its high vulnerability to climate change impacts. Taking advantage of the improvements made in urban parameterization and modeling, and given the lack of works that focus on this region integrating advanced urban parameterization schemes, this work adopts the Weather Research and Forecasting (WRF) model coupled with different urban canopy models (UCMs), to evaluate their performance using Local Climate Zones (LCZs) as land use classification. In particular, we applied three parameterization schemes: 1) Bulk parameterization, 2) Building Effect Parameterization (BEP), and 3) Building Energy Model coupled with BEP (BEP+BEM) over the city of Nicosia (Cyprus) at 1 km2 horizontal resolution for the period 27th of July to 5th of August 2021. This way, we aim to capture a better representation of the finer spatial and temporal distribution of the heatwave that occurred during that period, leading to a peak temperature of 44.3 °C on the 4th of August. These three simulations were compared with observations provided by the Department of Meteorology. The Modified IGBP MODIS-NOAH land use classification is adopted for the whole domain. At the same time, the LCZs classify the land cover into 10 classes based on the urban and thermal features of the Nicosia domain.
How to cite: Vurro, G., Constantinidou, K., and Hadjinicolaou, P.: Comparison of urban canopy models (UCMs) over the area of Nicosia, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5473, https://doi.org/10.5194/egusphere-egu23-5473, 2023.