EGU23-5501, updated on 22 Feb 2023
https://doi.org/10.5194/egusphere-egu23-5501
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Prediction of caesium dynamics in soil using Mid-Infrared Spectroscopy (MIRS)

Ayane Kan1,3, Maria Heiling1, Arsenio Toloza1, Franck Albinet2, Takuro Shinano3, and Gerd Dercon1
Ayane Kan et al.
  • 1Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
  • 2Independent Researcher & Consultant, Guéthary, France
  • 3Graduate School of Agriculture, Hokkaido University, Hokkaido, Japan

The release of radiocaesium radionuclides (RCs) has affected food safety after the accidents at Chernobyl and Fukushima Daiichi nuclear power plants. 137Cs, in particular, is of major concern in terms of agriculture due to its relatively long half-life (30.2 years for 137Cs), its strong fixation by the soil, and easy absorption by plants. Therefore, several countermeasures have been undertaken. For instance, topsoil removal and potassium fertilizer successfully reduced the level of RCs contamination in agricultural products. However, the relation between the transfer factor and exchangeable potassium (Kex) differs depending on the soil, meaning that there are several parameters including Kex that influences caesium (Cs) uptake by plants. The reason remains unclear, but a previous studies suggested that exchangeable 137Cs could be a crucial factor in explaining the variation. Also, some factors such as solid/liquid distribution coefficient (Kd) of Cs, or the ratio of exchangeable 137Cs versus total 137Cs (137Csex / 137Cstotal) in the soil could be involved in the determination of the risk of 137Cs uptake by plants. Furthermore, a rapid risk assessment is needed while these parameters can take a huge amount of time to be determined. Hence, Mid-Infrared Spectroscopy (MIRS), being faster, more cost-effective, and non-destructive, may be utilized for the determination of these parameters. However, the prediction of these parameters using MIRS has yet to be assessed. In this study, we aimed to assess whether MIRS can predict Cs-related parameters in the soil such as Kd, 137Csex / 137Cstotal, Kex and other parameters that may be of influence on the behaviour of RCs in the soil, such as CEC, pH, and soil organic carbon.

In total about 1700 soil samples were collected from agricultural fields in the Fukushima Prefecture in Japan. The soil samples were air-dried and ground. The MIRS data were obtained using a Thermo Scientific Nicolet iS20 spectrometer. Using Partial Least Squares Regression as a baseline, the spectra data and the wet chemistry data including Kd, 137Csex / 137Cstotal, and Kex, among other soil parameters, were used for modelling and prediction. Even though until present (at submission of this abstract) only 176 samples have been measured, we found that balancing the range of values between training and validation sets enabled Partial Least Regression Estimation methods to provide a relatively high R2 valid score for the prediction of each wet chemistry data, especially soil organic carbon, CEC, Mgex and Caex, ranging between 0.73 and 0.88. Using less than 200 samples, however, the validation scores of Cs -related parameters were less than 0.5. Further MIRS data are expected for up to about 1600 soil samples, for 137Csex / 137Cstotal in the soil. Additional processing and modelling techniques will be tested aiming at further improving the validation scores, and results will be shown at EGU.

How to cite: Kan, A., Heiling, M., Toloza, A., Albinet, F., Shinano, T., and Dercon, G.: Prediction of caesium dynamics in soil using Mid-Infrared Spectroscopy (MIRS), EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5501, https://doi.org/10.5194/egusphere-egu23-5501, 2023.

Supplementary materials

Supplementary material file