EGU23-5528
https://doi.org/10.5194/egusphere-egu23-5528
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

On the potential of offshore sensors and array processing for improving seismic event detection and locations in the North Sea

Annie Jerkins, Andreas Köhler, and Volker Oye
Annie Jerkins et al.
  • NORSAR, seismology, Oslo, Norway (annie@norsar.no)

CCS (Carbon Capture and Storage) is becoming an increasingly important technology to reduce global greenhouse gas emissions. The Norwegian part of the North Sea is an ideal place to conduct such projects as much of the infrastructure and experience is already in place due to current oil and gas operations. For safe CO2 storage an improved understanding of the natural background seismicity in the North Sea is still required. Currently, earthquakes in the region are monitored using onshore stations deployed on mainland Norway, resulting in low azimuthal sensor coverage and poorly constrained earthquake locations. However, permanent reservoir monitoring systems (PRMs), which are deployed offshore to surveil oil and gas fields, have the potential to reduce these station gaps and thus improve earthquake locations.

In this study we test the potential of incorporating offshore sensors at the Grane oil field for earthquake locations and detection utilizing array processing techniques. The advantage of array processing is that it can enhance seismic signals, decrease the detection threshold, and put additional constraints on direction and apparent velocities. Out of the 3400 sensors deployed at the Grane field, we have access to two subsets of data: i) Continuous data from 10 sensors spread along the boundaries of the field and, ii) segments of data from 30 sensors optimized for the purpose of array processing. Since the distances between the 10 sensors are large (6 km), traditional array processing methods are not applicable, and we therefore test and develop a new method for incoherent array processing using the kurtosis characteristic function. The kurtosis function is applied to the seismic signal prior to FK-analysis to make the signal more coherent.  The method showed great potential and worked for the majority of earthquakes analyzed in this study. The 30 sensor array was superior to the 10 sensor array and could potentially decrease the detection threshold of seismic events if continuous data are available. We conclude that the Grane sensors could be implemented as a part of a system for passive seismic monitoring in the North Sea. We recommend using the 30-sensors for this purpose. However, as we only have access to continuous data from 10 sensors, we found that these sensors are an appropriate replacement when the 30 sensors are not accessible. 

How to cite: Jerkins, A., Köhler, A., and Oye, V.: On the potential of offshore sensors and array processing for improving seismic event detection and locations in the North Sea, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5528, https://doi.org/10.5194/egusphere-egu23-5528, 2023.