EGU23-558, updated on 28 Apr 2023
https://doi.org/10.5194/egusphere-egu23-558
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterizing the spatial coherence of mesoscale eddies using in-situ data

Yan Barabinot and Sabrina Speich
Yan Barabinot and Sabrina Speich
  • Laboratoire de Météorologie Dynamique - ENS, France (yan.barabinot@ens-paris-saclay.fr)

Ocean mesoscale eddies are ubiquituos in the global ocean. They are responsible of about 80% of the total eddy kinetic energy and are suggested to exert a significant impact on air-sea interactions, ocean large-scale circulation, weather and marine ecosystems. They have been qualified as "coherent" structures as they can leave for months if not years propagating in the ocean interior. As ocean observations are very sparse, they have been essentially characterized from satellite altimetry fields, which provides access to a limited number of surface characteristics of only those eddies having an imprint on sea surface height.  Observations of mesoscale eddies 3D structure, or even 2D vertical sections are rare.  On the other hand, accurate description of ocean eddies from high-resolution ocean numerical simuation are also limited. In general, they have been accoubted for via statistics, instead of individual descriptions as the latter is difficult as they move away from fixed positions. In this work we present a detailed study of ocean eddies (surface and subsurface intensified) sampled during 10 oceanographic cruises which have a sufficient horizontal spatial resolution of the vertical eddy sampling - 9 in the Atlantic Ocean (during experiments EUREC4A-OA, M124, MSM60, MSM74, M160, HM2016611, KB2017606, KB 2017618), and one in the Indian (during the Physindien 2011 experiment). Our study characterizes the eddy core and boundary in a generic way using diagnostics based on active (PV, oxygen) and passive (temperature, salinity) tracers. Despite the different resolutions of the eddy sampling in the 9 studied regions, we show that the 3D boundary of an eddy behaves like a frontal zone characterized by the Ertel PV where the water mass trapped in the eddy joins with the surrounding waters. Whatever the  origin and size of the eddy are, the core is homogeneous in properties with the anomaly maximum located at depth, which makes its altimetric characterization difficult. Moreover, these analyses provide a new metrix for defining the coherence of an ocean eddy, a concept that has been always ill-defined because of the elusive character and undersampling of these structures.

 

How to cite: Barabinot, Y. and Speich, S.: Characterizing the spatial coherence of mesoscale eddies using in-situ data, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-558, https://doi.org/10.5194/egusphere-egu23-558, 2023.