Snow droughts as a precursor of water conflicts
- 1CIMA Research Foundation, Via A. Magliotto 2, 17100, Savona, Italy
- 2Environmental Protection Agency of Aosta Valley, Loc. La Maladière, 48-11020 Saint-Christophe, Italy
Water conflicts generally stem from an imbalance between water demand and availability; as such, they are often studied as a result of meteorological droughts – that is, a lack of precipitation or streamflow. By shifting water availability from wet winters to dry summers, when demand peaks, we hypothesized that snow water resources represent a crucial precursor of this imbalance, and thus play an important, but unexplored role in escalating drought-related water crises and conflict. To shed light on the nexus between snow droughts and increased water challenges, we draw lessons from the extraordinarily warm, dry, and prolonged 2021-2022 snow drought in the Italian Alps, from the consequent spring-to-summer water deficit, and from the relative seeds of conflict. To this end, we compared the spatial distribution of snow water resources deficit with the distribution and type of municipal mandatory water restrictions, under the assumption that the former are proxies of a future deficit in availability, while the latter are proxies of an imbalance between this availability and needs. We found initial evidence that the location and magnitude of the deficit in snow water resources observed across the Italian Alps in winter 2022 (-60% or more at peak accumulation) did result in seeds of institutional conflicts later in spring and summer. These findings can aid institutions and policymakers in understanding the mechanisms behind emerging water conflicts and their implications, and so design ad-hoc water policies, especially in a warming climate.
How to cite: Munerol, F., Avanzi, F., Morando, M., Altamura, M., Gabellani, S., Galvagno, M., Cremonese, E., and Ferraris, L.: Snow droughts as a precursor of water conflicts , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5634, https://doi.org/10.5194/egusphere-egu23-5634, 2023.