EGU23-5687
https://doi.org/10.5194/egusphere-egu23-5687
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Analysis of snow avalanche simulation results in a thalweg-following coordinate system

Oscar Dick, Matthias Tonnel, Anna Wirbel, Felix Oesterle, Jan-Thomas Fischer, and Michael Neuhauser
Oscar Dick et al.
  • Dep. Of Natural Hazards, BFW – Austrian Research Center for Forests, Innsbruck, Austria

The thickness integrated dense flow avalanche simulation module com1DFA of the open source framework AvaFrame is used for snow avalanche simulations with application in hazard mapping for different mountainous areas. In order to further increase the information value gained from the avalanche simulation results in a global coordinate system, we introduce a thalweg following coordinate system. It allows us to quantitatively compare simulation scenarios and results of different modelling approaches in a new way. It helps to bridge the gap between the modules operating in three-dimensional terrain (com1DFA) versus two-dimensional along the avalanche path, such as the well-known alpha-beta model implemented in module com2AB. One essential step of the analysis procedures (analysis modules in AvaFrame) is the avalanche thalweg generation itself. The thalweg depends on the main flow direction, a property of the avalanche event which is strongly influenced by the terrain the avalanche flow will encounter. So far, the main flow direction is usually derived from observations or avalanche simulations, and the thalweg is generated manually. However, the reproducibility of this method raises an issue, and manually identifying the avalanche thalweg for every slope is unnecessarily time-consuming.

In this work, we use com1DFA simulations in three dimensional terrain. We automatically generate the two-dimensional avalanche thalweg by extracting the centre of mass coordinates at every time step. Projecting the simulation results into this thalweg following coordinate system, we can derive the position of the avalanche front and the local travel angles, from which scalar measures like runout length and runout angle are determined. We combine temporal and spatial information by introducing the thalweg-time and thalweg-altitude diagrams. These offer a different perspective on the simulation results and, at a glance, provide information on the evolution of spatio-temporal flow variables (thickness, velocity) along the avalanche thalweg in a single plot. Additionally, by using a numerical particle-grid method, we can evaluate simulation outputs at a particle level and relate them to the whole avalanche flow. Another advantage of the analysis tools operating in the thalweg coordinate system is the possibility to compare simulation results with field measurements. For example, we present in-flow particle sensors trajectories and corresponding velocities recorded during field experiments to evaluate com1DFA simulation results and thereby help to improve the dense flow module. For different avalanche simulations, we show how these analysis modules provide a new way to summarize the complex spatio-temporal flow variables evolution in three dimensional terrain in a more intuitive two dimensional illustration along the automatically generated thalweg.

How to cite: Dick, O., Tonnel, M., Wirbel, A., Oesterle, F., Fischer, J.-T., and Neuhauser, M.: Analysis of snow avalanche simulation results in a thalweg-following coordinate system, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5687, https://doi.org/10.5194/egusphere-egu23-5687, 2023.