The eWaterCycle platform for open and FAIR hydrological collaboration
- 1Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, Netherlands (r.w.hut@tudelft.nl)
- 2Netherlands eScience Center, Amsterdam, The Netherlands
- 3Institute of Earth Surface Dynamics (IDYST), University of Lausanne , Lausanne, Switzerland
The eWaterCycle platform introduced in 2022 (https://doi.org/10.5194/gmd-15-5371-2022) provides hydrologists with an online platform to conduct numerical studies involving hydrological models. It allows hydrologists to work with each other's data and datasets directly from a webbrowser. The workflow of the experiment done is clearly visible, reproducible and easily adaptable because of how eWaterCycle separates the model (the algorithm) used from the experiment done with the model. eWaterCycle is designed such that research conducted on the platform is ‘FAIR by design’. Using eWaterCycle, studies can be done in less time, more transparently and by more junior members of the hydrological community than was possible a few years ago.
In this presentation, we will explain the capabilities of the eWaterCycle platform and show them by describing recently (published) works of MSc and PhD members of our team, including a model coupling study, a large sample hydrology study and a climate impact assessment study.
How to cite: Hut, R., Aerts, J., Wiersma, P., Hoogelander, V., van de Giesen, N., Drost, N., Kalverla, P., van Werkhoven, B., Verhoeven, S., Alidoost, F. (., Vreede, B., and Liu, Y.: The eWaterCycle platform for open and FAIR hydrological collaboration, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5702, https://doi.org/10.5194/egusphere-egu23-5702, 2023.