EGU23-5958
https://doi.org/10.5194/egusphere-egu23-5958
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tectonic reconstruction of the Lyngen Magmatic Complex

Marina Galindos Alfarache1, Holger Stünitz1,2, Mathieu Soret2, Benoît Dubacq3, and Guillaume Bonnet3
Marina Galindos Alfarache et al.
  • 1Department of Geosciences, The Arctic University of Norway, Tromsø, Norway (marina.galindos@uit.no)
  • 2Institut des Sciences de la Terre d'Orléans, University of Orléans, Orléans, France
  • 3Institut des Sciences de la Terre de Paris, Sorbonne Université, Paris, France

The Lyngen Magmatic Complex (LMC) is the lowest unit of the Lyngsfjellet Nappe (Upper Allochthon, North Norwegian Caledonides). The fabrics of the LMC rocks range from undeformed to mylonitic. The undeformed rock is a gabbro-norite formed primarily by anorthite-rich (93%) plagioclase, enstatite, and augite. Two deformation events are distinguished in the LMC: (D1) an earlier shearing that has produced a N—S trending vertical foliation with sub-horizontal stretching lineation and dextral sense of shear, and (D2) a top-to-SE-directed thrust contact with the lower nappe series at the base of the meta-gabbro-norite. In the thrust contact region, the early vertical foliation is rotated into a flat-lying orientation and shows an ESE-trending stretching lineation. Deformed fabrics of D1 have developed successively from lower amphibolite, to epidote-amphibolite, and to greenschist metamorphic grades, i.e., on a retrograde temperature-path. The fabrics of the thrust contact have also developed from amphibolite to greenschist conditions.

Rock fabrics associated to D1 are dominantly located in the northern portion of the LMC (from Lyngstuva to the north side of the Kjosen fjord). The amphibole compositions of these rocks vary from core to rim, showing a trend from pargasitic to actinolitic composition, consistent with the transition from high- to low-temperature (amphibolite to greenschist facies). U-Pb dating of titanite associated with the greenschist grade in meta-gabbro-norite assemblages indicates a date of 485±9 Ma. This date is interpreted as a deformation/metamorphic age, because the analysed titanite forms from pargasite breakdown and is aligned parallel to the deformed fabric. As this deformation event is synchronous with the crystallization age of the LMC (481±6 Ma, Augland et al., 2014), the deformation associated to the N—S oriented stretching lineation and vertical foliation is linked to sea floor strike slip movements during back-arc spreading of the LMC. D2-rock-fabrics are dominantly located in the southern portion of the LMC and represent typical structures of nappe stacking during the Scandian collisional stage of the Caledonian orogeny. Close to the lower boundary of the LMC, garnet-bearing amphibolites, allow refining the P and T conditions for this unit. Thermobarometric estimates result in conditions of 650°C and 10kbar. This temperature is in contrast with the Raman spectroscopy values averaging around 530°C for the graphite bearing sediments below the lower contact of the LMC, i.e. sediments between the meta-gabbro-norite and the underlying Reisa nappe. The temperature difference between the two deformation events indicates re-heating of the meta-gabbro-norite during the Scandian thrusting.

The D1 structural relationships described in the LMC appears common for supra-subduction zone settings, and could potentially be observed at deeper mantle sections as reported in younger analogue tectonic settings as the Wadi al Wasit area of the Oman ophiolite. D2 appears linked to out-of-sequence thrusting at the base of the LMC with respect to the surrounding nappes, contributing to the north Norwegian Caledonides nappe transport sequence.

How to cite: Galindos Alfarache, M., Stünitz, H., Soret, M., Dubacq, B., and Bonnet, G.: Tectonic reconstruction of the Lyngen Magmatic Complex, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-5958, https://doi.org/10.5194/egusphere-egu23-5958, 2023.