EGU23-6117, updated on 22 Feb 2023
https://doi.org/10.5194/egusphere-egu23-6117
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Late Mesozoic rift evolution and deformation reconstruction of the Songliao Basin, northeastern China

hongxin xing
hongxin xing
  • School of Earth Sciences and Resources, China University of GeoSciences(Beijing), Beijing, China (656310343@qq.com)

Abstract:

The development of faults governs the kinematics of continental deformation. The Songliao Basin, located at the central part of late Mesozoic lithospheric thinning province in East Asian region, experienced intense rifting during Early Cretaceous epoch and formed an intricate syn-rift fault system. However, the geometric and kinematic relationships inherent in the fault system have not yet been satisfactorily explained, hampering the understanding of basin formation and related marginal plate tectonic processes. Here, theories for polymodal faulting were applied to evaluate the faulting evolution of the Songliao Basin, based on which a quantitively deformation reconstruction was developed. Our reconstruction shows that the basin formation during the syn-rifting period was subdivided into three main stages: late Valanginian–Barremian(133-118.2Ma) initiation of extension, Aptian(118.2-113.9M) extension climax, and Albian(113.9-100.5Ma) extension wanning and initiation of post-extensional subsidence. The deformation of the Songliao Basin is spatially heterogeneous. Faulting analyses revealed a three-dimensional strain filed with a dominating horizontal ESE-WNW extension, a minor horizontal near N-S extension, and a large vertical shortening in the Northern Songliao Basin (NSL). The 3-D non-plane strain with non-zero intermediated extension(ε2) magnitude controlled the synchronous displacement of a NNE–SSW-striking fault set and a NNW–SSE-striking fault set in orthorhombic pattern to create the characteristic rhomboidal fault geometry. Whereas, the Southern Songliao Basin (SSL) deformed under a 2-D plane strain filed with a horizontal ESE-WNW extension and vertical shortening. The plane strain condition is interpreted as a special case with no intermediated strain(ε2), and produces a pair of near N-S-striking fault sets in conjugate symmetry. Our results illustrate that this particular three-dimensional deformation result in the intricate fault system in the Songliao Basin and that the fault geometry is controlled by the ratios of the principal strains, especially the relative magnitude of the intermediate strain. We argue that the three-dimensional strain field in the NSL reflected the trench retreat in the Paleo-Pacific subduction zone and the gravitational collapse of the thickened lithosphere, and that the extension of the SSL is merely the consequence of the trench retreat.

Keywords:

Songliao Basin, three-dimensional strain, orthorhombic fault, syn-rift deformation, quantitative reconstruction

How to cite: xing, H.: Late Mesozoic rift evolution and deformation reconstruction of the Songliao Basin, northeastern China, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6117, https://doi.org/10.5194/egusphere-egu23-6117, 2023.