EGU23-6193
https://doi.org/10.5194/egusphere-egu23-6193
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Collision-sticking rates of acid-base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model

Bernhard Reischl1, Huan Yang1, Ivo Neefjes1, Valtteri Tikkanen1, Jakub Kubečka2, Theo Kurtén3, and Hanna Vehkamäki1
Bernhard Reischl et al.
  • 1University of Helsinki, Institute for Atmospheric and Earth System Research, Physics, Finland (bernhard.reischl@helsinki.fi)
  • 2Aarhus University, Department of Chemistry, iClimate, Denmark
  • 3University of Helsinki, Institute for Atmospheric and Earth System Research, Chemistry, Finland

Kinetics of collision-sticking processes between vapor molecules and clusters of low volatile compounds govern the initial steps of atmospheric new particle formation. Conventional non-interacting hard-sphere models underestimate the collision rate by neglecting long-range attractive forces, and the commonly adopted assumption that every collision leads to the formation of a stable cluster (unit mass accommodation coefficient) is questionable for small clusters, especially at elevated temperatures. Here, we present a generally applicable analytical interacting hard-sphere model for evaluating collision rates between molecules and clusters, accounting for long-range attractive forces. In the model, the collision cross section is calculated based on an effective molecule-cluster potential, derived using Hamaker’s approach. Applied to collisions of sulfuric acid or dimethylamine with neutral bisulphate-dimethylammonium clusters composed of 1-32 dimers, our new model predicts collision rates 2-3 times higher than the non-interacting model for small clusters, while decaying asymptotically to the non-interacting limit as cluster size increases, in excellent agreement with a collision rate theory-atomistic molecular dynamics simulation approach. Additionally, we calculated sticking rates and mass accommodation coefficients (MAC) using atomistic molecular dynamics collision simulations. For sulfuric acid, unit MAC is observed for collisions with all cluster sizes at temperatures between 200 K and 400 K. For dimethylamine, we find that MACs decrease with increasing temperature and decreasing cluster size. At low temperatures, the unit MAC assumption is generally valid, but at elevated temperatures MACs can drop below 0.2 for small clusters.

How to cite: Reischl, B., Yang, H., Neefjes, I., Tikkanen, V., Kubečka, J., Kurtén, T., and Vehkamäki, H.: Collision-sticking rates of acid-base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6193, https://doi.org/10.5194/egusphere-egu23-6193, 2023.