InSAR constraints on coseismic and postseismic deformation of the 2021 Ganaveh earthquake along the Zagros Foredeep fault
- 1Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66137, Iran (zahra.mousavi@gmail.com)
- 2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France (andrea.walpersdorf@univ-grenoble-alpes.fr)
The moderate magnitude (Mw 5.8) Ganaveh earthquake, as a compressive event. occurred on 2021 April 18 in the southwest of the Dezful embayment of the Zagros Mountain belt, Iran. We process Sentinel-1 SAR images in ascending and descending geometries to investigate the coseismic deformation and its source parameters. The resultant displacement maps indicate a maximum of 17 cm of surface displacement in the satellite line of sight direction with no evidence of surface rupture. The NW-oriented elliptical fringes in coseismic ascending and descending displacement maps are in agreement with the strike of the major Zagros structures. The InSAR displacement map is inverted to evaluate the earthquake source parameters and the inversion results reveal a low-angle NE-dipping fault plane characterized by a maximum dip slip of 95 cm at ~6 km depth and a slight sinistral slip component (2.9 cm). Inversion of 39 earthquake focal mechanism (from 1968 to 2021), including the Ganaveh mainshock and its five larger aftershocks indicate a regional compressional stress regime and applying this stress on the retrieved Ganaveh fault plane leads to a minor sinistral movement confirming the geodetic results. InSAR coseismic displacement and relocated mainshock and aftershocks situate on the hanging wall of the Zagros Foredeep fault. This underlines the ZFF as the causative fault of the Ganaveh earthquake. The occurrence of Ganaveh moderate magnitude earthquake on the Zagros Foredeep fault highlights its role as the western structural boundary for recurrent Mb>5 events in the Dezful embayment.
To examine the possibility of postseismic deformation after such a moderate magnitude earthquake in Zagros, we processed and created the interferograms using the Sentinel-1 SAR images based on the SBAS timeseries analysis approach after the mainshock until the end of 2021. The time series analysis of the constructed interferograms indicates a maximum of 7 cm of postseismic deformation with a similar strike and shape as the coseismic displacement. The short-term postseismic displacement of the Ganaveh earthquake is released seismically by aftershocks. The agreement between the cumulative displacement, cumulative number of aftershocks, and their related moment release through time and the similar pattern and direction of postseismic and coseismic deformation suggest that an afterslip mechanism can be the causative mechanism of the Ganaveh postseismic motion. We estimate a maximum of 30 cm slip at a depth of ~5 km along the coseismic causative fault plane by inverting the postseismic cumulative deformation map.
How to cite: Mousavi, Z., Jafari, M., Aflaki, M., Walpersdorf, A., and Motaghi, K.: InSAR constraints on coseismic and postseismic deformation of the 2021 Ganaveh earthquake along the Zagros Foredeep fault , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6274, https://doi.org/10.5194/egusphere-egu23-6274, 2023.