EGU23-6505
https://doi.org/10.5194/egusphere-egu23-6505
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global inversion and parametrization for building tomographic velocity models 

Umedzhon Kakhkhorov1, Børge Arntsen1, Wiktor Waldemar Weibull2, and Espen Birger Raknes1,3
Umedzhon Kakhkhorov et al.
  • 1Norwegian University of Science and Technology
  • 2University of Stavanger
  • 3AkepBP ASA

Traveltime tomography is applied to investigate seismic structures of the Earth's subsurface. An accurate tomographic velocity model is important for a high-resolution waveform velocity building and its availability is one of the main components to mitigate the nonlinear inverse problem. We present a new methodology of obtaining velocity models for traveltime tomography studies. We found a way to get a highly accurate first-arrival traveltime tomography in combination with global optimization. The role of global optimization is twofold: to find initial solutions that are close to ‘truth’, and to guide tomographic inversion towards a geologically consistent model that explains the data. The main advantage of our workflow is a data-driven approach avoiding the use of a conventional layer-based parameterization and incorporation of manual interpretations into the velocity model. 

To date, a few geophysical studies have been focused on developing data-driven and a labour non-intensive regional tomographic velocity model building workflow. In our study, we present the tomographic velocity model building workflow as a combination of first-arrival traveltime tomography and global optimization. Global optimization allows to search for velocity parameters and depth to interfaces in the larger search area with a higher chance of convergence. After defining the geometry of main layers and general velocity trends, traveltime tomography with a bi-cubic B-spline model parameterization can be fitted to further update the velocity model. Our approach allows obtaining a highly accurate velocity model which can be used for seismic depth migration and as a starting model for a FWI seismic imaging. The workflow is developed and applied to synthetic and field regional seismic datasets. 

The developed methodology is applied for a shallow seismic engineering data and regional Ocean Bottom Seismic data. We identify four key components that lead to building an accurate tomographic velocity model: (i) understanding prominent horizons and possible velocity distribution of a layer within the study area. (ii) Performing ray penetration test to define offset ranges which carry the velocity information for the defined layers. (iii) Determining inversion schema to a perform global search for the velocity trends and major boundaries, and a local search to update lateral velocity variation. (iv) Iteratively update a set of defined layers (i.e., sediment, igneous crust and basement) in a top-down manner. 

How to cite: Kakhkhorov, U., Arntsen, B., Weibull, W. W., and Raknes, E. B.: Global inversion and parametrization for building tomographic velocity models , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6505, https://doi.org/10.5194/egusphere-egu23-6505, 2023.