EGU23-6583, updated on 25 Feb 2023
https://doi.org/10.5194/egusphere-egu23-6583
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A spatial regression model to measure the urban population exposure to extreme heat

Emanuele Massaro, Luca Caporaso, Matteo Piccardo, Rossano Schifanella, Hannes Taubenböck, Alessandro Cescatti, and Gregory Duveiller
Emanuele Massaro et al.

Temperatures are rising and the frequency of heat waves is increasing due to anthropogenic climate change. At the same time, the population in urban areas is rapidly growing. As a result, an ever-larger part of humankind will be exposed to even greater heat stress from heat waves in urban areas in the future. In this research, we focus on studying the determinants of land surface temperature (LST) gradients in urban environments. We implement a spatial regression model that is able to predict with high accuracy (R2 > 0.9 in the test phase of k-fold cross-validation) the LST of urban environments across 200 cities based on land surface properties like vegetation, built-up areas, and distance to water bodies, without any additional climate information. We show that, on average, by increasing the overall urban vegetation by 3%, it would be possible to reduce by 50% the exposure of the urban population that lives in the warmest areas of the cities for the average of the three summer months, achieving a reduction of 1 K in LST. By coupling the model information with the population layer, we show that an 11% increase in urban vegetation is necessary in order to obtain a reduction of 1 K in the most populated areas, where at least 50% of the population live. We finally discuss the challenges and the limitations of greening interventions in the context of available surfaces in urban areas.

How to cite: Massaro, E., Caporaso, L., Piccardo, M., Schifanella, R., Taubenböck, H., Cescatti, A., and Duveiller, G.: A spatial regression model to measure the urban population exposure to extreme heat, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6583, https://doi.org/10.5194/egusphere-egu23-6583, 2023.