EGU23-6642
https://doi.org/10.5194/egusphere-egu23-6642
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Snow evolution through the Last Interglacial with a multi-layer snow model

Thi Khanh Dieu Hoang1, Aurélien Quiquet1, Christophe Dumas1, and Didier M. Roche1,2
Thi Khanh Dieu Hoang et al.
  • 1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France (dieu.hoang@lsce.ipsl.fr)
  • 2Department of Earth Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

The Last Interglacial period (LIG), which occurred approximately between 130 and 116 kyr BP, is characterized by similar/warmer temperatures and higher sea levels compared to the present-day conditions due to the orbital variation of the Earth. Hence, the period provides insights into the behavior of the Earth's system components under stable and prolonged warm climates and their subsequent evolution into a glacial state. 

To better understand the ice sheet's surface mass balance that ultimately drives the advance and retreat of ice-sheets, we study the snow cover changes in the Northern Hemisphere during the LIG. In order to do so, we used BESSI (BErgen Snow Simulator), a physical energy balance model with 15 vertical snow layers and high computational efficiency, to simulate the snowpack evolution. First, BESSI was validated using the regional climate model MAR (Modèle Atmosphérique Régional) as forcing and benchmark for snow cover over the Greenland and Antarctica Ice Sheets under present-day climate. Using two distinct ice sheet climates helps constrain the different processes in place (e.g., albedo and surface melt for Greenland and sublimation for Antarctica). 

For the LIG simulations, the latest version of an Earth system model of intermediate complexity iLOVECLIM was used to force BESSI in different time slices to fully capture the snow evolution in the Northern Hemisphere throughout this period. Impacts of the downscaling component of iLOVECLIM, which provides higher resolution data and accounts for the influences of the topography, on BESSI performance are also discussed.  

The results show that BESSI performs well compared to MAR for the present-day climate, even with a less complex model set-up. Through the LIG, with the ability to model the snow compaction, the change of snow density and snow depth, BESSI simulates the snow cover evolution in the studied area better than the simple snow model (bucket model) included in iLOVECLIM. 

The findings suggest that BESSI can provide a more physical surface mass balance scheme to ice sheet models such as GRISLI of iLOVECLIM to improve simulations of the ice sheet - climate interactions.  

How to cite: Hoang, T. K. D., Quiquet, A., Dumas, C., and Roche, D. M.: Snow evolution through the Last Interglacial with a multi-layer snow model, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6642, https://doi.org/10.5194/egusphere-egu23-6642, 2023.