EGU23-6652
https://doi.org/10.5194/egusphere-egu23-6652
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The production of N2O from sheep urine patches is influenced by soil properties.

Danielle Hunt1, Laura Cardenas2, Davey Jones1,3, and David Chadwick1
Danielle Hunt et al.
  • 1Bangor University, School of Natural Sciences , United Kingdom of Great Britain – England, Scotland, Wales (d.hunt@bangor.ac.uk)
  • 2Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
  • 3Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch, WA 6150, Australia

The urine patch from livestock creates an active hotspot of soil nitrogen (N) cycling due to the intrinsically high N and carbon (C) loading rates. These N hotspots frequently result in N losses to the atmosphere or leaching from soil. N losses vary due to climate conditions, soil conditions, and management practices. However, we do not fully understand how these factors influence N cycling and nitrous oxide (N2O) emissions from urine patches. Intensive lowland grazing systems on mineral soils have been relatively well studied in this context, however, other grazing systems such as extensive upland systems on organic soils have been much less studied.

To investigate the effect of soil type on N cycling and N2O emissions in the urine patch, soil was collected from pastures in an altitudinal gradient, from an improved lowland mineral soil with coastal influence to unimproved organic soil under acid grassland.  Depending on the position along the gradient, the soils change in properties such as pH, bulk density, organic matter content, cation exchange capacity and nutrient availability. Soil was collected for a laboratory incubation study from four sites including two lowland sites (Cambisol and Cambisol with coastal influence) and two upland sites (Podzol and Histosol). Soils were sieved and divided into four replicates of each treatment. Sheep urine from Welsh Mountain ewes was applied at an equivalent loading rate of 150 kg N ha-1 to half of the soil and the remaining half received the equivalent volume of water as a control. All the treatments were held at 70% water-filled pore space to optimise both moisture conditions for nitrification and denitrification to occur. Over 100 days, greenhouse gas emissions were monitored along with soil pore water nitrate and ammonium concentrations.

Soil type had an overall significant effect on N2O emissions with the highest cumulative emissions during this period being from the Podzol and the lowest cumulative emissions being from the Histosol. The two lowland sites showed no significant differences. There was a delay in nitrification in the Podzol, with the majority of the N2O being emitted a month after urine application. The Histosol showed no evidence of nitrification as there was no build-up of nitrate concentrations over the experiment. This was probably due to differences in soil pH in the soils. There were no differences in carbon dioxide or methane emissions from the four soils, but there was a spike in methane flux on the Podzol which corresponded with increases in N2O fluxes from this soil type.

This experiment has shown that certain upland soils have the potential to produce N2O emissions and cycle N under optimal conditions, although this is at a much slower rate than the lowland sites. Results from this incubation study helps improve our understanding of how soil properties in organic soils affect N cycling and contribute to knowledge gaps on the sustainability of upland grazing systems.

How to cite: Hunt, D., Cardenas, L., Jones, D., and Chadwick, D.: The production of N2O from sheep urine patches is influenced by soil properties., EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-6652, https://doi.org/10.5194/egusphere-egu23-6652, 2023.