EGU23-7094, updated on 18 Sep 2023
https://doi.org/10.5194/egusphere-egu23-7094
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Precursor of disintegration of Greenland's largest floating ice tongue

Angelika Humbert1,2, Veit Helm1, Niklas Neckel1, Ole Zeising1, Martin Rückamp3, Khan Shfaqat Abbas4, Loebel Erik5, Dietmar Gross6, Rabea Sondershaus7, and Ralf Müller7
Angelika Humbert et al.
  • 1Alfred-Wegener-Institut Helmholtz Zentrum für Polar-und Meeresforschung, Glaciology, Bremerhaven, Germany (angelika.humbert@awi.de)
  • 2University of Bremen, Department of Geosciences, Bremen, Germany
  • 3Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
  • 4DTU Space, National Space Institute, Technical University of Denmark, Department of Geodesy and Earth Observations, Copenhagen, Denmark
  • 5Technische Universität Dresden, Institut für Planetare Geodäsie, Dresden, German
  • 6Division of Solid Mechanics, Institute for Mechanics, Technical University of Darmstadt, Darmstadt, Germany
  • 7Division of Continuum Mechanics, Institute for Mechanics, Technical University of Darmstadt, Darmstadt, Germany

The largest floating tongue of Greenland’s ice sheet, Nioghalvfjerdsbrae, has so far been relatively stable with respect to areal retreat. Curiously, it experienced significant less thinning and ice flow acceleration than its neighbour Zacharias Isbrae. Draining more than 6% of the ice sheet, Nioghalvfjerdsbrae might become a large contributor to sea level rise in the future. Therefore, the stability of the floating tongue is a focus of this study. We employ a suite of observational methods to detect recent changes. We found that the calving style has changed at the southern part of the eastern calving front from normal tongue-type calving to a crack evolution initiated at frontal ice rises reaching 5-7km and progressing further upstream compared to 2010. The calving front area is further weakened by a substantial increase of a zone of fragments and open water at the tongue’s southern margin, leading to the formation of a narrow ice bridge. These geometric and mechanical changes are a precursor of instability of the floating tongue. We complement our study by numerical ice flow simulations to estimate the impact of future break-up or disintegration events on the ice discharge. These idealised scenarios reveal that a loss of the south-eastern area would lead to 1% of increase of ice discharge at the grounding line, while a sudden collapse of the frontal area (46% of the floating tongue area) will enhance the ice discharge by 8.3% due to loss in buttressing.

Humbert, A., Helm, V., Neckel, N., Zeising, O., Rückamp, M., Khan, S. A., Loebel, E., Gross, D., Sondershaus, R., and Müller, R.: Precursor of disintegration of Greenland's largest floating ice tongue, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-171, in review, 2022

How to cite: Humbert, A., Helm, V., Neckel, N., Zeising, O., Rückamp, M., Shfaqat Abbas, K., Erik, L., Gross, D., Sondershaus, R., and Müller, R.: Precursor of disintegration of Greenland's largest floating ice tongue, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7094, https://doi.org/10.5194/egusphere-egu23-7094, 2023.