The influence of temperature variability on the Greenland ice sheet
- 1Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (mikkel.lauritzen@nbi.ku.dk)
- 2Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
- 3Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
The projected contribution of the Greenland ice sheet to sea-level rise in response to future warming relies upon the state of the present-day ice sheet, and one of the main contributors to uncertainties in projections is due to uncertainties in the initial state of the simulated ice sheet. A previous study showed that including the inter-annual climate variability in an idealized ice sheet model leads to an increased mass loss rate, but the effect on the Greenland ice sheet is not known. Here we present a study using the PISM model to quantify the influence of inter-annual variability in climate forcing on the Greenland ice sheet.
We construct an ensemble of climate-forcing fields that account for inter-annual variability in temperature using reanalysis data products from RACMO and NOAA-CIRES, and we investigate the steady state and the sensitivity of the simulated Greenland ice sheet under these different scenarios.
We find that the steady state volume decreases by 0.24-0.38% when forced with a variable temperature forcing compared to a constant temperature forcing, corresponding to 21.7±5.0 mm of sea level rise, and the response to abrupt warming is 0.03-0.21 mm SLE a-1 higher depending on climate scenario. The northern basins are particularly sensitive with a change in volume of 1.2-0.9%. Our results emphasize the importance of including climate variability in projections of future mass loss.
How to cite: Lauritzen, M., Aðalgeirsdóttir, G., Rathmann, N., Grinsted, A., Noël, B., and Hvidberg, C.: The influence of temperature variability on the Greenland ice sheet, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7507, https://doi.org/10.5194/egusphere-egu23-7507, 2023.