EGU23-7594
https://doi.org/10.5194/egusphere-egu23-7594
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Frictional behavior and rheology of bi-disperse quartz gouge mixtures

Nathalie Casas1, Carolina Giorgetti1, Cristiano Collettini1,2, and Marco Maria Scuderi1
Nathalie Casas et al.
  • 1Sapienza University of Rome, Earth Siences, Italy (nathalie.casas@uniroma1.it)
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

Earthquake nucleation has been understood as controlled by the frictional properties of fault zones. Mature fault zones host abrasive wear products, such as gouges, which result from the frictional sliding occurring in successive slip events. Shear localization in fault gouges is strongly dependent on, among others, fault mineralogical composition and grain size distribution, originating a wide variety of microstructural textures that may be related to different types of fault motion from aseismic creep, slow earthquakes to fast slip events. Additionally, within a fault, one can encounter different stages of maturity, ranging from an incipient and poorly-developed fault zone (i.e. discontinuous and thin gouge layer) to a mature fault zone that has experienced a lot of wear from previous sliding events (i.e. well-developed gouge layer). The localization of deformation within a mature gouge layer has been identified as possibly responsible for mechanical weakening and as an indicator of a change in stability within the fault.

To gain insights on the role of grain size distribution, and thus fault maturity, in slip behavior and fault rheology, we performed friction experiments on quartz fault gouge in a double direct shear configuration using a biaxial apparatus (BRAVA at INGV in Rome, Italy). The experiments were performed at a constant normal stress of 40 MPa and under 100% humidity.  We investigated different sliding velocities, from 10 µm/s to 1 mm/s, to assess time-dependent physical processes. Different bi-disperse mixtures of quartz were sheared to reproduce different initial grain size distributions within the fault (F110, average grain size  and Min-u-sil, average grain size ). Samples were carefully collected at the end of the experiments to prepare thin sections for microstructural analyses.

A first set of experiments was performed increasing the proportion between smaller and larger particles within a homogeneous blend. The friction evolves from a strain-hardening behavior for a sample with only F110 to a slip-weakening one for the one with only Min-u-sil. The difference in rheology is observable in the analyzed microstructures. Particularly, the two end members clearly show comminution and localization along boundary shear planes, whereas mixtures of the two sizes of particles only present a more diffused deformation. In the second set of experiments, we sheared gouges with a horizontal layering of the two grain sizes and observed different behaviors in terms of friction and rheology. These layered gouges present strain hardening behavior, with a strengthening part corresponding to the material of the layer in contact with the sliding block and a steady-state part with slightly higher friction than for the homogeneous mixtures.

These results give important information on the connection between grain size distribution, shear localization, and the resulting fault slip behavior. In this context, the proportion between small/large particles and their distribution and percentages within the fault plays an important role in controlling fault rheology. We also complete our knowledge by using Discrete Element Method, simulating gouge sliding with different grain scale properties (size, distribution, cementation…), and observing a detailed evolution of shear localizations.

How to cite: Casas, N., Giorgetti, C., Collettini, C., and Scuderi, M. M.: Frictional behavior and rheology of bi-disperse quartz gouge mixtures, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7594, https://doi.org/10.5194/egusphere-egu23-7594, 2023.

Supplementary materials

Supplementary material file