Dynamical pathways for pan-Atlantic compound cold and windy extremes
- 1Department of Earth Sciences, Uppsala University, Uppsala, Sweden
- 2Institute of Meteorology and Climate, Karlsruhe Institute of Technology, Karlsruhe, Germany
- 3Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
North American cold spells tend to co-occur with extreme wind and precipitation events over Europe, but the physical mechanisms behind such “pan-Atlantic” compound extremes have not been fully clarified yet. Rather than proposing a single mechanism, we discuss how cold spells over a single North American region can be connected with wind extremes over different European regions through separate, physically consistent dynamical pathways. The first one involves the propagation of a Rossby wave train from the Pacific Ocean, and is associated with windstorms over north-western Europe in the 5-10 days after the cold spell peak. The second one is associated with a high-latitude anticyclone over the North Atlantic and an equatorward-shifted jet, leading to windstorms over south-western Europe already in the days preceding the cold spell peak.
The same dynamical pathways can be independently retrieved from a cluster analysis based on the temporal evolution of the North Atlantic circulation in the days preceding North American cold spells. Such an analysis highlights significantly different stratospheric circulation patterns between the two pathways, with cold spells of the second pathway tied to a weaker than usual stratospheric polar vortex, and an enhanced occurrence of sudden stratospheric warmings.
How to cite: Riboldi, J., Dorrington, J., Leeding, R., Segalini, A., and Messori, G.: Dynamical pathways for pan-Atlantic compound cold and windy extremes, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7908, https://doi.org/10.5194/egusphere-egu23-7908, 2023.