A compact general-purpose Doppler Lidar for lidar networks
- 1Leibniz Institute of Atmospheric Physics e.V. at the University Rostock, Optical Soundings and Sounding Rockets, Kühlungsborn, Germany (froh@iap-kborn.de)
- 2Fraunhofer Institute for Laser Technology, Aachen, Germany
We present the state of the VAHCOLI (Vertical and Horizontal COverage by Lidar) project for investigating small- to large-scale processes in the atmosphere. In the future, an array of compact lidars with multiple fields of view will allow for measurements of temperatures, winds and aerosols with high temporal and vertical resolution.
Doppler lidars, in particular resonance Doppler lidars, with daylight capability are challenging systems because of the small field of view, spectral filtering and other additional subsystems required compared to observations at night. We developed a universal Doppler lidar platform (~1m3, ~500kg) with all required technologies for automatic operation. The system is capable of studying Mie scattering (aerosols), Rayleigh scattering (air molecules), and resonance fluorescence on free potassium atoms in the middle atmosphere from 5 km to 100 km. Unique spectral methods and narrowband optical components allow precise wind, temperature, and aerosol measurements by studying the Doppler shift and broadening of the scattered signals. The combination of cost-efficient design and fast assembling of such a system allows the construction of a Doppler lidar network with identical units
We will show the latest results and discuss the next scientific and technical steps for network operation and transferring the technology into industry.
How to cite: Froh, J., Höffner, J., Mauer, A., Mense, T., Eixmann, R., Baumgarten, G., Lübken, F.-J., Munk, A., Scheuer, S., Strotkamp, M., and Jungbluth, B.: A compact general-purpose Doppler Lidar for lidar networks, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8014, https://doi.org/10.5194/egusphere-egu23-8014, 2023.