EGU23-8041, updated on 25 Feb 2023
https://doi.org/10.5194/egusphere-egu23-8041
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Coastal Digital Twins: building knowledge through numerical models and IT tools

Anabela Oliveira, André B. Fortunato, Gonçalo de Jesus, Marta Rodrigues, and Luís David
Anabela Oliveira et al.
  • National Laboratory for Civil Engineering, Lisbon, Portugal (aoliveira@lnec.pt)

Digital Twins integrate continuously, in an interactive, two-way data connection, the real and the virtual assets. They provide a virtual representation of a physical asset enabled through data and models and can be used for multiple applications such as real-time forecast, system optimization, monitoring and controlling, and support enhanced decision making. These recent tools take advantage of the huge online volume of data streams provided by satellites, IoT sensing and many real time surveillance platforms, and the availability of powerful computational resources that made process-solving, high resolution models or AI-based models possible, to build high accuracy replicas of the real world.
In this paper, the adaptation of the concept of Digital Twins is extended from the ocean to the coastal zones, handling the high non-linear physics and the complexity of monitoring these regions, using the on-demand coastal forecast framework OPENCoastS (Oliveira et al., 2020; Oliveira et al., 2021) to build a user-centered data spaces where multiple services, from early-warning tools to collaboratory platforms, are customized to meet the users needs. Computational effort and data requirements for these services is high, integration of Coastal Digital Twins in federated computational infrastructures, such as European Open Science Cloud (EOSC) or INCD in Portugal, to guarantee the capacity to serve multiple users simultaneously.

This tool is demonstrated in the coastal area of Albufeira, located in the southern part of Portugal, in the scope of the SINERGEA innovation project. Coastal cities face growing challenges from flooding, sea water quality and energy sustainability, which increasingly require an intelligent, real-time management. The urban drainage infrastructures  transport to the wastewater treatment plants all waters likely to pollute downstream beaches. Real-time tools are required to support the assessment and prediction of the quality of bathing waters, to assess the possible need to prohibit beach water usage. During heavy rainfall events, a decentralized management systems can also contribute to mitigate downstream flooding. This requires the operation of the entire system to be optimized depending on the specific environmental conditions, and the participation and access to all the information by the several stakeholders. This system integrates real-time information provided by different entities, including monitoring networks, infrastructure operation data and a forecasting framework. The forecasting system includes several models covering all relevant water compartments: atmospheric, rivers and streams, urban stormwater and wastewater infrastructure, and receiving coastal water bodies circulation and water quality predictions.

References

A. Oliveira, A.B. Fortunato, M. Rodrigues, A. Azevedo, J. Rogeiro, S. Bernardo, L. Lavaud, X. Bertin, A. Nahon, G. Jesus, M. Rocha, P. Lopes, 2021. Forecasting contrasting coastal and estuarine hydrodynamics with OPENCoastS, Environmental Modelling & Software, Volume 143,105132, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2021.105132.

A. Oliveira, A.B. Fortunato, J. Rogeiro, J. Teixeira, A. Azevedo, L. Lavaud, X. Bertin, J. Gomes, M. David, J. Pina, M. Rodrigues, P. Lopes, 2019. OPENCoastS: An open-access service for the automatic generation of coastal forecast systems, Environmental Modelling & Software, Volume 124, 104585, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2019.104585.

How to cite: Oliveira, A., B. Fortunato, A., de Jesus, G., Rodrigues, M., and David, L.: Coastal Digital Twins: building knowledge through numerical models and IT tools, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8041, https://doi.org/10.5194/egusphere-egu23-8041, 2023.