EGU23-8407
https://doi.org/10.5194/egusphere-egu23-8407
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-salinity core flooding study in clay-bearing sandstones, a contribution to geothermal reservoir characterisation

Daniela Navarro-Perez, Quentin Fisher, Piroska Lorinczi, Samuel Allshorn, and Carlos Grattoni
Daniela Navarro-Perez et al.
  • Institute of Applied Geoscience, School of Earth and Environment, University of Leeds, UK

Geothermal reservoir characterisation benefits from the oil and gas petrophysics experience in areas such as porosity and permeability estimation, rock-fluid interactions etc.. Permeability is the crucial parameter in assessing water transmissibility with geothermal reservoirs. Permeability impairment is a key worry due to rock-fluid interactions within the reservoir life cycle management. The laboratory techniques help in recreating the reservoir conditions and determining formation damage. Uncertainty increases for tight geothermal reservoirs (permeability < 1 mD), which often contain significant amounts of clay that reacts with water or ionic species during hydraulic fracturing used in Enhanced Geothermal Systems.

Clay-bearing sandstones are complex reservoirs since their clay minerals actively interact with water, causing formation damage by clay swelling and migration mechanisms. Core flooding experiments study the clay minerals' behaviour in different water conditions - e.g. salinity, electrolytes species, pH, and temperature - helping to understand the impact of clays on reservoir quality and identifying optimal conditions to reduce formation damage.

A multi-salinity experiment was undertaken to study the clay effect of three tight clay-bearing sandstones, samples A, B and C, of different reservoir provenance. Sample A has a core porosity of 18%, gas permeability of 1.28 mD, and 15.5%v/v of XRD clay minerals and kaolinite as the primary group. Sample B has a core porosity of 20.2%, gas permeability of 0.56 mD, and 37%v/v of XRD clay minerals and chlorite as the primary group. Sample C has a core porosity of 18.8%, the gas permeability of 1.95 mD, and 36.3%v/v XRD clay minerals and mica as the primary group. The experiment consisted of flooding brine with constant inflow at different salinities and monitoring the rock resistance, pressure drop, and outlet brine conductivity. High- and low-salinity batteries were flooded, ranging from 200,000-75,000 and 50,000-0 ppm NaCl respectively, at a constant room temperature of 21⁰C. In addition, the brine permeability was measured in steady- and unsteady-states techniques, and pore size distribution was NMR scanned at each run per battery.

Permeability impairment increased in all samples. Samples A (kaolinite) and C (mica) show a staggered increase in the salinity range. In contrast, sample B (chlorite) shows a peculiar upside-down trend in the low-salinity range. Clay migration was detected in the last brine runs since fines grain were released in the outflow. NMR T2 distribution shows a bimodal pore distribution for samples B and C, and the pore-throat connectivity rearranges as salinity decreases in both samples, indicating a clay swelling mechanism. The cation-exchange capacity (CEC) of samples A and C resulted in 3.7 and 3.6 meq/100g, respectively, and sample B was 71.5 meq/100g. CEC values are directly related to the clay mineral content. The highest CEC (sample B) relates to the upside-down permeability impairment with clay swelling. This investigation contributes to the geothermal reservoir characterisation in understanding how the water salinity controls the clay effect in tight clay-bearing sandstone reservoirs.

How to cite: Navarro-Perez, D., Fisher, Q., Lorinczi, P., Allshorn, S., and Grattoni, C.: Multi-salinity core flooding study in clay-bearing sandstones, a contribution to geothermal reservoir characterisation, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8407, https://doi.org/10.5194/egusphere-egu23-8407, 2023.