The effects of warm air intrusions in the high arctic on cirrus clouds
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany (georgios.dekoutsidis@dlr.de)
In the last decades scientist have noticed that the average global temperature of the Earth has been increasing. Moreover, the arctic is warming significantly faster than the global average, a phenomenon labeled Arctic Amplification. Two atmospheric components contributing to the warming of the atmosphere in the arctic are water vapor and cirrus clouds. Both have an effect on the radiation budget of the atmosphere and more specifically the longwave radiation. A Warm Air Intrusion (WAI) event is defined as the meridional transport of warm, water-vapor-rich airmasses into the arctic. During such events large amounts of water vapor can be transported into the arctic, which also leads to high supersaturations aiding the formation and longevity of cirrus clouds. There is a strong hypothesis that WAI events in the high arctic are becoming more frequent, so it is important to study the effects these events have on the macrophysical and optical properties of cirrus clouds in the arctic.
The HALO-(AC)3 flight campaign was conducted in March/April 2022 with the central goal of studying WAI events in the arctic regions of the Northern Hemisphere. For this campaign the German research aircraft HALO was equipped with remote sensing instrumentation, including the airborne LIDAR system WALES which we use in this study. WALES is a combined water vapor differential absorption and high spectral resolution lidar. It provides water vapor measurements in a 2D field along the flight track. We combine these measurements with ECMWF temperature data and calculate the Relative Humidity with respect to ice (RHi) inside and in the vicinity of cirrus clouds. For each flight we studied the synoptic situation and created two groups: One containing flights were cirrus that formed in arctic airmasses were measured and another were cirrus were measured during WAI events, henceforth arctic cirrus and WAI cirrus respectively. Our main goal is to compare the humidity characteristics inside and in the vicinity of arctic cirrus clouds and WAI cirrus clouds.
For the arctic cirrus we find that 49 % of the in-cloud data points are supersaturated with RHi mostly below the lower threshold for heterogeneous nucleation (low HET). The cloud-free air around these clouds has a supersaturation percentage of 8.5 %. The WAI cirrus are measured in a wider temperature range and also have a significantly higher supersaturation percentage inside as well as in the cloud-free air, 61.7 % and 9.3 % respectively. The majority is again in the low HET regime. Additionally, WAI cirrus are on average geometrically thicker than arctic cirrus. Finally, regarding the vertical distribution of RHi within these clouds we find that WAI cirrus have their highest supersaturations near the cloud top and become gradually subsaturated towards cloud-bottom. On the other hand, arctic cirrus have their highest supersaturations near cloud-middle, with lower supersaturations at cloud-top and subsaturated cloud-bottom.
How to cite: Dekoutsidis, G., Groß, S., and Wirth, M.: The effects of warm air intrusions in the high arctic on cirrus clouds, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8500, https://doi.org/10.5194/egusphere-egu23-8500, 2023.