EGU23-8563, updated on 09 Jan 2024
https://doi.org/10.5194/egusphere-egu23-8563
EGU General Assembly 2023
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Joint Active and Passive P-wave Tomography reveals Mt. Etna's Seismic Anisotropy

Rosalia Lo Bue1, Manuele Faccenda1, Ornella Cocina2, Francesco Rappisi1, and Brandon Paul Vanderbeek1
Rosalia Lo Bue et al.
  • 1Università degli studi di Padova, Dipartimento di Geoscienze, Padova, Italy (rosalia.lobue@unipd.it)
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy

 Characterized by persistent eruptive activity associated with a complex interaction between magma in its plumbing system and an articulated tectonic and geodynamic context, Mt. Etna (Sicily, Italy) is one of the most hazardous and monitored volcanoes in the world. Since the late 1990s, several seismic and tomographic experiments have been performed to obtain accurate images of the shallow-intermediate P-wave velocity structures of the volcano. Unfortunately, seismic tomography models, in particular those derived from body waves, typically relies on the approximation of seismic isotropy. This is a poor assumption considering that P-waves exhibit strong sensitivity to anisotropic fabrics and neglecting anisotropic heterogeneity can introduce significant velocity artefacts that may be misinterpreted as compositional and thermal heterogeneities (VanderBeek & Faccenda,2021; Lo Bue et al, 2022). Here, we discard the isotropic approximation and invert for P-wave isotropic (mean velocity) and anisotropic (magnitude of hexagonal anisotropy, azimuth and dip of the symmetry axis) parameters using the methodology proposed by VanderBeek & Faccenda (2021). We use active and passive seismic data collected by the TOMO-ETNA experiment (Ibanez et al. 2016a, b; Coltelli et al. 2016) between June and November 2014. We present 3D anisotropic P-wave tomography models of Etna volcano and compare them with purely isotropic images. Discriminating the anisotropic structures from the velocity artifacts allows to better recover the isotropic and anisotropic crustal structures and to improve our understanding on the major regional fault systems and on the processes that control magma and fluids ascent beneath the volcanic edifice.

 

Coltelli, M., Cavallaro, D., Firetto Carlino, M., Cocchi, L., Muccini, F., D'Aessandro, A., ... & Rapisarda, S. (2016). The marine activities performed within the TOMO-ETNA experiment. Annals of Geophysics.

Ibáñez, J. M., Prudencio, J., Díaz-Moreno, A., Patanè, D., Puglisi, G., Lühr, B. G., ... & Mazauric, V. (2016a). The TOMO-ETNA experiment: an imaging active campaign at Mt. Etna volcano. Context, main objectives, working-plans and involved research projects. Annals of Geophysics, 59(4), S0426-S0426.

Ibáñez, J. M., Díaz-Moreno, A., Prudencio, J., Patené, D., Zuccarello, L., Cocina, O., ... & Abramenkov, S. (2016b). TOMO-ETNA experiment at Etna volcano: activities on land. Annals of Geophysics, 59(4).

Lo Bue, R., Rappisi, F., Vanderbeek, B. P., & Faccenda, M. (2022). Tomographic Image Interpretation and Central-Western Mediterranean-Like Upper Mantle Dynamics From Coupled Seismological and Geodynamic Modeling Approach. Frontiers in Earth Science, 10, 884100.

VanderBeek, B. P., & Faccenda, M. (2021). Imaging upper mantle anisotropy with teleseismic P-wave delays: insights from tomographic reconstructions of subduction simulations. Geophysical Journal International, 225(3), 2097-2119.

 

How to cite: Lo Bue, R., Faccenda, M., Cocina, O., Rappisi, F., and Vanderbeek, B. P.: Joint Active and Passive P-wave Tomography reveals Mt. Etna's Seismic Anisotropy, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8563, https://doi.org/10.5194/egusphere-egu23-8563, 2023.