EGU23-8615
https://doi.org/10.5194/egusphere-egu23-8615
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Machine learning applications for weather and climate need greater focus on extremes

Peter Watson
Peter Watson
  • School of Geographical Sciences, Bristol University, Bristol, UK
Multiple studies have now demonstrated that machine learning (ML) can give improved skill for simulating fairly typical weather events in climate simulations, for tasks such as downscaling to higher resolution and emulating and speeding up expensive model parameterisations. Many of these used ML methods with very high numbers of parameters, such as neural networks, which are the focus of the discussion here. Not much attention has been given to the performance of these methods for extreme event severities of relevance for many critical weather and climate prediction applications, with return periods of more than a few years. This leaves a lot of uncertainty about the usefulness of these methods, particularly for general purpose models that must perform reliably in extreme situations. ML models may be expected to struggle to predict extremes due to there usually being few samples of such events. 
 
This presentation will review the small number of studies that have examined the skill of machine learning methods in extreme weather situations. It will be shown using recent results that machine learning methods that perform reasonably for typical weather events can have very large errors in extreme situations, highlighting the necessity of testing the performance for these cases. Extrapolation to extremes is found to work well in some studies, however. 
 
It will be argued that more attention needs to be given to performance for extremes in work applying ML in climate science. Research gaps that seem particularly important are identified. These include investigating the behaviour of ML systems in events that are multiple standard deviations beyond observed records, which have occurred in the past, and evaluating performance of complex generative models in extreme events. Approaches to address these problems will be discussed.

How to cite: Watson, P.: Machine learning applications for weather and climate need greater focus on extremes, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8615, https://doi.org/10.5194/egusphere-egu23-8615, 2023.