Engaging local communities in planning Nature-Based-Solutions for urban drainage systems - the MUDAR project
- 1University of Trento, Department of Civil, Environmental and Mechanical Engineering, Italy
- 2Consórcio Associações Moçambique, Mozambique
- 3Universidade Zambeze, Faculdade de Ciências e Tecnologia, Mozambique
Urban population has been increasing worldwide in recent decades and it is expected to continue growing in the coming years. Cities are facing the effects of the climate crisis, which primarily impact the most vulnerable contexts, first and foremost informal settlements. In this context, the growth of informal neighborhoods, home to one billion people1, poses complex challenges for the cities of today and tomorrow. In these urban areas traditional, informal and formal social dynamics coexist, strengthened by strong community identities and bonds. Major problems are due to the lack of basic services and infrastructure, making these areas more vulnerable to the increasingly frequent and intense extreme rainfall events.
In this work, we present the recently launched Europeaid-funded project MUDAR (Mozambique integrated Urban Development by Actions and Relationships), and specifically focus on its component that addresses the dynamics and effects of flooding in an informal urban area: the Macuti neighborhood in the city of Beira, Mozambique. Macuti is situated on the coast, making it particularly vulnerable to frequent cyclones, one of all Idai, which damaged 49% of its buildings in March 20192. Moreover, it is located on a marshy, purely flat area at the end of an inadequate open drainage network serving the entire city, which is unable to drain the flow at high tide. Macuti, with its almost 17 thousand people (2017), since the early 2000s has been experiencing a rapid growth in spontaneous settlements, which has resulted in a higher population density, with the unbuilt area decreasing by 40% from 2004 to 2022, and soil permeability further reducing in a context where the clayey soil composition already strongly limits rainfall infiltration. These changes, in addition to the inadequate water infrastructure, have exacerbated flooding problems associated with heavy rainfall events (the maximum daily precipitation of the 1990-2020 period was 288.5 mm/day). Investigating the socio-hydrology of flooding in these informal settlements is particularly complex because its requirements for high-resolution topographic, soil, land use and meteorological data, which are very limited in these informal settlements.
More specifically, we present preliminary outcomes and the proposed project strategy to cope with the intrinsic data scarcity of such context, which is based on carefully designed participatory surveys with local actors. To fill this data gap, a multi-disciplinary approach has been adopted by combining elaborations from satellite image processing (SAR) with in-situ measurements and interviews to inhabitants and professionals. In addition to being involved in providing information about the area, the inhabitants are a crucial actor in the decision-making process for choosing the technical solutions to be implemented. Preliminary results on flooding dynamics in Macuti neighborhood, as well as on three Nature-Based-Solutions scenarios emerging from the participatory process highlight promising factors that can allow adapting the participatory procedure in similar contexts.
1French, M., Trundle, A., Korte, I., Koto, C. (2020). Climate Resilience in Urban Informal Settlements: Towards a Transformative Upgrading Agenda. Climate Resilient Urban Areas, 129-153
2UNOSAT-REACH (2019). Mozambique- Beira City -Macuti - Neighbourhood Damage Assessment- As of 26 March 2019. URL: https://m.reliefweb.int/report/3056948
How to cite: Serrao, L., Ottaviani, S., Diamantini, C., Marzadri, A., Ragazzi, M., Paulino, W. A. M., Macueia, F. C. C. E., Chate, H. J., Msopela, A. D. S. V., Antonio, A. M., and Zolezzi, G.: Engaging local communities in planning Nature-Based-Solutions for urban drainage systems - the MUDAR project, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8836, https://doi.org/10.5194/egusphere-egu23-8836, 2023.