EGU23-92, updated on 09 Dec 2023
https://doi.org/10.5194/egusphere-egu23-92
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Improving identification of glacier bed materials using converted-wave seismics

Ronan Agnew1,2, Adam Booth1, Alex Brisbourne2, Roger Clark1, and Andy Smith2
Ronan Agnew et al.
  • 1Institute of Applied Geoscience, University of Leeds, Leeds, UK
  • 2British Antarctic Survey, Cambridge, UK

When modelling ice sheet and glacier dynamics, a consideration of basal conditions is essential. Bed topography, hydrology and materials provide important controls on ice flow; however, the materials underlying large sections of the polar ice sheets are unknown. Seismic amplitude-versus-offset (AVO) analysis provides a means of inferring glacier bed properties, namely acoustic impedance and Poisson's ratio, by measuring bed reflectivity as a function of incidence angle.

However, existing methods of applying AVO to glaciology only consider the compressional-wave component of the wavefield and solutions suffer from non-uniqueness. This can be addressed using multi-component seismic datasets, in which a strong converted-wave arrival (downgoing compressional-wave energy converted to shear-wave energy upon reflection at the glacier bed) is often present. We present a method of jointly inverting compressional (PP) and converted-wave (PS) seismic data to improve constraint of glacier bed properties.

Using synthetic data, we demonstrate that for typical survey geometries, joint inversion of PP- and PS-wave AVO data delivers better-constrained bed acoustic impedance and Poisson’s ratio estimates compared with PP-only inversion. Furthermore, joint inversion can produce comparably constrained results to PP inversion when using input data with a smaller range of incidence angles/offsets (0-30 degree incidence for joint inversion, versus 0-60 degrees for PP- only). This could simplify future field acquisitions on very thick ice, where obtaining data at large incidence angles is difficult.

Joint AVO inversion therefore has the potential to improve identification of glacier bed materials and simplify field acquisitions of glacial AVO data. We also present preliminary results from Korff Ice Rise, West Antarctica, where better constraints on bed conditions can help improve our knowledge of ice sheet history in the Weddell Sea sector. Routine measurements of this kind will help constrain ice-sheet model inputs and reduce uncertainty in predictions of sea-level rise.

How to cite: Agnew, R., Booth, A., Brisbourne, A., Clark, R., and Smith, A.: Improving identification of glacier bed materials using converted-wave seismics, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-92, https://doi.org/10.5194/egusphere-egu23-92, 2023.

Supplementary materials

Supplementary material file