Using Distributed Fiber-optic Sensing for Tracking Caprock Fault Activation Processes
- 1GFZ Potsdam, Potsdam, Germany
- 2Lawrence Berkeley National Laboratory, Berkeley (CA), United States
- 3Rice University, Houston (TX), United States
Identifying and monitoring the reactivation of faults and opening of fractures affecting low permeability, sealing formations in natural underground storage complexes such as Carbon Capture and Storage projects and Nuclear Waste repositories is essential to ensure storage integrity and containment. Although passive seismic monitoring can be effective for detecting induced failure, stress accumulation and fault reactivation can occur aseismically in clay-rich formations, preventing early failure to be recognized. Here, we investigate the potential of applying strain monitoring with fiber-optics sensing technologies to assess in-situ changing stress conditions at high spatial and temporal resolution.
We present results of fiber-optic sensing monitoring during the FS-B experiment, a controlled activation of a fault zone affecting the Opalinus Clay Formation in the Mont Terri underground Laboratory (Switzerland). Six constant flowrate water injections induced the hydraulic opening of the fault. A hydraulic connection between the injector and a monitoring borehole occurred, developing a flow path sub-parallel to the fault strike. A 2 km long fiber-optic cable looped through 10 monitoring boreholes surrounding and crossing the fault zone was used for distributed acoustic and strain sensing (DAS and DSS) before, during and after injection. Continuous low-frequency (< 1 Hz) DAS data reveals mechanical strain associated with fault reactivation. Increasing extensional strain is recorded near the point of injection and near the newly formed hydraulic flow path, reaching a value of ~150 μɛ. Post-activation residual strain of ~60 μɛ suggests irreversible fault zone deformation. Smaller strain changes are recorded above and below the high pressure flow path, suggesting a mechanically disturbed zone larger than the leakage zone. Low-frequency DAS data are consistent with co-located DSS strain data, local, 3D displacement measurements of fault movements and P-wave velocity anomalies derived from Continuous Active Source Seismic Monitoring (CASSM). Our results are promising and demonstrate the potential of fiber-optic sensing as a powerful tool for monitoring spatio-temporal evolution of fault reactivation processes and leakage in clay formations induced by fluid pressurization.
How to cite: Rodríguez Tribaldos, V., Hopp, C., Soom, F., Guglielmi, Y., Cook, P., Shadoan, T., Ajo-Franklin, J., Robertson, M., Wood, T., and Birkholzer, J.: Using Distributed Fiber-optic Sensing for Tracking Caprock Fault Activation Processes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9314, https://doi.org/10.5194/egusphere-egu23-9314, 2023.