EGU23-9621
https://doi.org/10.5194/egusphere-egu23-9621
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Basal Conditions and Sedimentary Structure of the Whillans Ice Stream.

J. Paul Winberry
J. Paul Winberry
  • Central Washington University, Ellensburg, USA

The Whillans Ice Stream (WIS) is a major outlet of the West Antarctic Ice Sheet. Significantly, the downstream portion of the WIS is presently decelerating, possibly stagnating by the end of this century. Additionally, this downstream region of WIS is unique in that it moves primarily by stick-slip motion. However, both the rate of deceleration as well as the percent of motion accommodated by stick-slip motion is spatially variable. Such spatial variability is potentially linked to associated variability in basal conditions. Active source seismic measurement are capable of providing high-resolution insights into basal conditions, however, they are time-consuming to collect, limiting the spatial extent over which they can be acquired. In this presentation, we will use passive seismic measurements collected at over 50 seismic stations to map sediment thickness and ice-bed conditions across the region. This will be done using the receiver function method which images the depth and physical properties of sediments by modeling the arrival times and amplitudes of seismic waves that interact with subglacial sedimentary structures. We will first map conditions at the ice-bed interface by using relatively high-frequency waveforms (> 2 Hz) as they are sensitive to the physical properties of the shallow (< 20m ) subglacial sediments layers. Across the entirety of the study region, we find that this uppermost layer of sediments is characterized by relatively high porosity sediments.  Second, we will utilize lower frequencies (< 2 Hz) to map the depth basement, finding that the entire region is underlain 100’s of meters of sediments (Gustafson et al., Science, 2022). We will use our maps of sediment properties and thickness to investigate potential mechanisms for the observed variability in deceleration and stick-slip behavior of the WIS.  

How to cite: Winberry, J. P.: Basal Conditions and Sedimentary Structure of the Whillans Ice Stream., EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-9621, https://doi.org/10.5194/egusphere-egu23-9621, 2023.