EGU23-970
https://doi.org/10.5194/egusphere-egu23-970
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying the BIPV window benefit in urban environment under climate change: a comparison of three Chinese cities

jiachuan yang, Liutao Chen, and Xing Zheng
jiachuan yang et al.
  • Hong Kong University of Science and Technology, Hong Kong (cejcyang@ust.hk)

Building-integrated photovoltaic technology (BIPV) has been proven as an effective way to increase renewable energy in the urban environment. Without occupying any land resources, this technology has great potentials for achieving low carbon in the economically developed cities. Due to the lack of modelling tools, the impact of BIPV window in the street canyon is not well understood. To fill the gap, we developed a new parameterization scheme for BIPV window, and incorporated it into building energy simulations coupled with a single-layer urban canyon model. Model evaluation suggests that the coupled model is able to reasonably capture the diurnal profiles of BIPV window temperature and power generation, building cooling load, and outdoor microclimate. Canyon aspect ratio, window coverage, façade orientation, and power generation efficiency are found to be the most critical factors in maximizing the power generation of BIPV windows. Simulation results of an office floor in three Chinese cities under different climate backgrounds show that Beijing has the greatest solar potential in south orientation for power generation, which is 1.5 times the power generation in Shenzhen and Nanjing. Compared to clear window, BIPV window has positive benefits when window coverage is greater than 60% in open canyon. With lighting energy saving and power generation, BIPV window consistently has positive benefits than wall materials. The benefit of BIPV windows is larger in Beijing, followed by Shenzhen and Nanjing. Under future climate forcing of year 2050, the net electricity benefit of BIPV window will be larger than 15%. Findings in this study provide guidance for BIPV application in the built environment, and cast light on the construction of sustainable and low-carbon neighborhoods.

How to cite: yang, J., Chen, L., and Zheng, X.: Quantifying the BIPV window benefit in urban environment under climate change: a comparison of three Chinese cities, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-970, https://doi.org/10.5194/egusphere-egu23-970, 2023.