EGU23-9874
https://doi.org/10.5194/egusphere-egu23-9874
EGU General Assembly 2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Spatio-temporal localization of seismicity in relation to large earthquakes

Ilya Zaliapin1 and Yehuda Ben-Zion2
Ilya Zaliapin and Yehuda Ben-Zion
  • 1Department of Mathematics and Statistics, University of Nevada, Reno, United States of America (zal@unr.edu)
  • 2Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, United States of America (benzion@usc.edu)

Progressive localization of deformation may signify a regional preparation process leading to large earthquakes [Ben-Zion & Zaliapin, GJI, 2020; Kato & Ben-Zion, Nat Rev Earth Environ. 2021]. The localization framework describes the evolution from distributed failures in a rock volume to localized system-size events. Ben-Zion & Zaliapin (2020) documented robust cycles of localization and de-localization of background earthquakes with M > 2 in Southern California that precede the M7 earthquakes within 2-4 years. This analysis has been done on regional scale, without posterior selection of the examined areas (e.g., around epicenters of large events). Similar results are observed before M7.8 earthquakes in Alaska using background seismicity with M > 4, and in laboratory acoustic emission experiments.

In this work we examine spatial characteristics of the localization process, identifying sub-regions that are responsible for the observed localization and delocalization. The analysis focuses on relative (with respect to other areas) changes in the background intensity. On sub decadal temporal scale, the observed relative seismic activity tends to concentrate on and switch between several subsets of the regional fault network. Within 2-10 years prior to a large event, there is relative activation in a large volume that not necessarily include the impending epicenter. This is followed by a prominent deactivation 2-3 years prior to a large event, reminiscent of the “Mogi donut”, potentially reflecting a transition to aseismic or small events. Some regions may experience multiple activation episodes before a large earthquake. The results emphasize the importance of examining small-magnitude events and joint analyses of seismic and geodetic data.

References:

  • Ben-Zion, Y. and I. Zaliapin (2020) Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 223(1), 561-583. doi:10.1093/gji/ggaa315
  • Kato, A. and Y. Ben-Zion (2021) The generation of large earthquakes. Nat Rev Earth Environ 2, 26–39 https://doi.org/10.1038/s43017-020-00108-w

 

How to cite: Zaliapin, I. and Ben-Zion, Y.: Spatio-temporal localization of seismicity in relation to large earthquakes, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-9874, https://doi.org/10.5194/egusphere-egu23-9874, 2023.