NP6.1 | Turbulence, wave-currents interactions and other nonlinear physical processes in lakes and oceans
EDI
Turbulence, wave-currents interactions and other nonlinear physical processes in lakes and oceans
Co-organized by AS4/OS4
Convener: Kevin Lamb | Co-conveners: Verónica Morales Márquez, Enrico Calzavarini, François G. Schmitt, Marek Stastna, Manita Chouksey, Kateryna Terletska
Orals
| Tue, 25 Apr, 10:45–12:30 (CEST), 14:00–15:42 (CEST)
 
Room 0.16
Posters on site
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
Hall X4
Posters virtual
| Attendance Mon, 24 Apr, 16:15–18:00 (CEST)
 
vHall ESSI/GI/NP
Orals |
Tue, 10:45
Mon, 16:15
Mon, 16:15
The nonlinear nature of fluid flow gives rise to a wealth of interesting and beautiful phenomena. Many of these are of fundamental importance in the understanding of lakes, oceans and the atmosphere because of their role in such things as transport, the energy cascade and, ultimately, in mixing. This session is intended to bring together researchers interested in the fundamental nature of nonlinear processes in rivers, lakes, oceans and the atmosphere. Examples include, but are not limited to, nonlinear and solitary waves, wave-current and wave-wave interactions, flow instabilities and their nonlinear evolution, turbulence, frontogenesis, double diffusion and the nonlinear equation of state, convection, and river plumes. Presentations on theoretical, modelling, experimental or observational work are welcome.

Orals: Tue, 25 Apr | Room 0.16

Chairpersons: Kevin Lamb, Verónica Morales Márquez, François G. Schmitt
10:45–10:50
10:50–11:00
|
EGU23-132
|
ECS
|
On-site presentation
Teodor Vrecica, Nick Pizzo, and Luc Lenain

Internal waves are crucial contributors to the transport of sediment, heat, and nutrients in coastal areas. While internal waves have been extensively studied using point measurements, their spatial variability is less well understood. Here, we present a unique set of high-resolution infrared imagery collected from a helicopter, hovering over very energetic shoaling and breaking internal waves. We compute surface velocities by tracking the evolution of thermal structures at the ocean surface and find horizontal velocity gradients with magnitudes that are more than 100 times the Coriolis frequency. Under the assumption of no vertical shear we determine vertical velocities from the obtained horizontal divergence estimates and identify areas of the wave undergoing breaking. The spatial variability of the internal wave occurs on scales from a few to a few hundred meters. These results highlight the need to collect spatio-temporal observations of the evolution of internal waves in coastal areas.

How to cite: Vrecica, T., Pizzo, N., and Lenain, L.: Airborne observations of shoaling and breaking internal waves, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-132, https://doi.org/10.5194/egusphere-egu23-132, 2023.

11:00–11:10
|
EGU23-3642
|
ECS
|
On-site presentation
Nicolas Castro-Folker and Marek Stastna

While most theoretical work on internal waves idealizes the stratification, geophysical stratifications are typically much more complicated.  We build on recent work on nearly linear stratifications by adopting perturbations that take the form of a localized patch of mixing. We present a data-centric framework that seeks to identify which locations and widths of a mixing patch yield the largest effect on the structure of exact waves (computed via the Dubreil-Jacotin-Long equation), linear waves (computed via the longwave Taylor-Goldstein equation), and evolving nonlinear waves (via time-dependent simulations using the incompressible Navier-Stokes equations). We find that the vertical structure functions of linear waves are most sensitive to perturbations below (above) the pycnocline when the pycnocline is above (below) mid-depth; furthermore, as the pycnocline approaches mid-depth, the depth of the perturbation layer with the greatest impact approaches the depth of the pycnocline. In contrast, the centre streamwise velocity profile of a DJL wave is perturbed most by layers above (below) the pycnocline when the pycnocline is above (below) mid-depth. Finally, we present the results of simulations of evolving nonlinear waves, where we compare pairs of cases with and without a perturbation layer. Despite the presence of an initial patch of unstable fluid, the perturbation layer is sustained during the simulation; nevertheless, slight Rayleigh-Taylor instabilities are observed within and about the perturbation layer. Modulations in the horizontal velocity field about the leading solitary wave are compared with the results of the linear and DJL analyses.

How to cite: Castro-Folker, N. and Stastna, M.: The sensitivity of internal solitary waves to localized patches of mixing, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3642, https://doi.org/10.5194/egusphere-egu23-3642, 2023.

11:10–11:20
|
EGU23-13078
|
ECS
|
Virtual presentation
Adèle Moncuquet, Nicole Jones, Lucie Bordois, Andrew Zulberti, François Dufois, Florent Grasso, and Pascal Lazure

The Bay of Biscay (Bob) is a hot spot for the generation of internal tides and nonlinear internal waves (NLIW). However, no studies have focused on internal waves on the continental shelf of the Bob. Here, we present 22 days of collocated temperature, velocity and backscatter profiles within a water depth H of 65 m. The background stratification evolved from two pycnoclines, with the strongest one near the sea bed, to a continuous profile due to wind-driven upwelling.

Under the double pycnocline situation, we observed trains of elevation emerging from each internal tidal front with amplitude reaching up to H/4 and propagating at speeds between 0.1 and 0.35 m/s. Sporadically depression waves were measured within the train and can propagate substantially faster (between 0.36 and 0.54 m/s). With the continuous stratification, the trains of NLIWs of elevation and containing opposite polarities were no longer observed.

These observations suggest that depression waves can cross the train of elevation waves. Resulting interactions could have significant impacts on sediment dynamics over the shelf. The double pycnocline regime and the impact of the stratification modification due to wind will be investigated numerically in future work.

How to cite: Moncuquet, A., Jones, N., Bordois, L., Zulberti, A., Dufois, F., Grasso, F., and Lazure, P.: In situ observation of mode 1 nonlinear internal waves of opposite polarity in a changing environment, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13078, https://doi.org/10.5194/egusphere-egu23-13078, 2023.

11:20–11:30
|
EGU23-15066
|
Virtual presentation
Wouter Mostert, Hunter Boswell, and Guirong Yan

Energy dissipation due to the breaking of surface waves remains an important open topic in both the open ocean and in coastal waters. Here we will discuss similarities between the deep- and shallow-water regimes. To do this, we first present data from direct numerical simulations of shoaling and breaking solitary waves in bathymetric depth transition. In an abrupt depth transition, we investigate the influence of the severity of the depth transition on whether the incident wave will break, finding good agreement with experimental data of Losada et al. (1988). We next investigate the energy dissipation rate in a gradual, linear depth transition. The resulting dataset is compared with an array of existing physics-based scaling arguments, and finds especially good agreement with an inertial model of Mostert & Deike (2020). We then discuss possible scaling approaches for understanding breaker dissipation in shallow water and draw comparisons with deep-water data and models. We will conclude with some insights towards a potential universal breaking parametrisation.

How to cite: Mostert, W., Boswell, H., and Yan, G.: Breaking threshold and energy dissipation in solitary waves in a depth transition, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15066, https://doi.org/10.5194/egusphere-egu23-15066, 2023.

11:30–11:40
|
EGU23-14424
|
On-site presentation
Miklos Vincze and Zsolt Áron Kiss

We report on results from laboratory experiments performed in a quasi-two-layer system of cold and warm water in a rectangular laboratory tank. Warm front propagation is initiated by removing a vertical barrier from between the two prepared sections of the tank containing cold and warm water filled up to the same level. The warm front propagation in the vicinity of the free water surface is monitored using a high precision infrared camera from above, and with dye visualisation from the side simultaneously. After the warm front reaches the sidewall of the tank, its "head" is reflected, and hence an internal bore emerges along the interface separating the two layers. Following further reflections the bore splits to a train of internal solitary waves, resembling the solutions of the KdV equation. We find that, interestingly, although the waves propagate along the internal interface, certain surface signatures of the bore and wave dynamics can be detected from the water surface temperature fields due to secondary convective flows. This result may have certain applicability for the detection of internal waves using infrared sea-surface temperature data from satellites.

How to cite: Vincze, M. and Kiss, Z. Á.: Laboratory experiments on internal solitary wave reflections and their detectability via water surface infrared thermography, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14424, https://doi.org/10.5194/egusphere-egu23-14424, 2023.

11:40–11:50
|
EGU23-15036
|
On-site presentation
Uwe Harlander, Franz-Theo Schön, Ion D. Borcia, Sebastian Richter, Rodica Borcia, and Michael Bestehorn

Tidal bores are natural phenomena observed in at least 450 river estuaries all around the world from Europe to America and Asia. Tidal bores manifest as a series of waves propagating over long distances upstream in the estuarine zone of a river. Bores can be studied experimentally using sloshing water tanks where sloshing itself is a process with many applications, not only relevant for environmental flows. In a remarkable paper, Cox and Mortell (1986) showed that for an oscillating water tank, the evolution of small-amplitude, long-wavelength, resonantly forced waves follow a forced Korteweg-de Vries (fKdV) equation. The solutions of this model agree well with experimental results by Chester and Bones (1968). At first glance this is surprising since their experimental setup is in conflict with a number of assumptions made for deriving the fKdV equation. It is hence worth to repeat the experiment by Chester and Bones but using a long narrow channel setup.

We use a long circular channel and repeat the experiments by Chester and Bones. We compare the results with solutions from the fKdV equation but also with the one from a full nonlinear model solving the Navier-Stokes equations. Under resonance conditions, depending on the parameters, we find a range of nonlinear localized wave types from single and multiple solitons to undular bores. As shown by Cox and Mortell, when the fluid is considered to be inviscid a kind of Fermi-Pasta-Ulam recurrence is observed for the fKdV model. Stationarity is reached by including a weak damping to the fKdV equation. 

References
A.A. Cox, M.P. Mortell 1986. J. Fluid Mech. 162, pp. 99-116.
W. Chester and J.A. Bones 1968. Proc. Roy. Soc. A, 306, 23 (Part II).

How to cite: Harlander, U., Schön, F.-T., Borcia, I. D., Richter, S., Borcia, R., and Bestehorn, M.: Resonant water-waves in a circular channel: forced KdV solutions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-15036, https://doi.org/10.5194/egusphere-egu23-15036, 2023.

11:50–12:00
|
EGU23-5790
|
On-site presentation
Sergio Chibbaro, Marco Crialesi-Esposito, and Luca Brandt

Emulsions are a major class of multiphase flows, crucial in industrial process (e.g. food and drug production) and ubiquitous in environmental flows (e.g. oil spilling in maritime environment). Already at volume fractions of few precents, the dispersed phase interacts with pre-existing turbulence created at large scale, yet the interaction between phases and the turbulent energy transport across scales is not yet fully understood.

In this work, we use Direct Numerical Simulation to study emulsions in homogeneous and isotropic turbulence, where the Volume of Fluid (VoF) method is used to represent the complex features of the liquid-liquid interface.

We consider a mixture of two matching-density phases, where we vary volume fraction, viscosity ratio and large-scale Weber number aiming at understanding the turbulence modulation and the observed droplet size distributions.  The analysis, based on the spectral scale-by-scale analysis, reveals that energy is consistently transported from large to small scales by the interface, and no inverse cascade is observed. We find that the total surface is directly proportional to the amount of energy transported, and that the energy transfer in the inertial range provides information about the droplet dynamics. We observe the -10/3 and -3/2 scaling on droplet size distributions, suggesting that the dimensional arguments which led to their derivation are verified in HIT conditions and denser conditions. Finally, we discuss the highly intermittent behaviour of the multiphase flow, which can be directly related to the polydisperse nature of the flow.

The study provides some significant observations towards a more comprehensive understanding of multiphase turbulence, opening new questions for future studies. 

How to cite: Chibbaro, S., Crialesi-Esposito, M., and Brandt, L.: Droplet dynamics in homogeneous and isotropic turbulence, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5790, https://doi.org/10.5194/egusphere-egu23-5790, 2023.

12:00–12:10
|
EGU23-6336
|
ECS
|
On-site presentation
Inés Hernández García, Albert Oliver Serra, and Francisco Machín Jiménez

The Canary Islands region is located in the North-East Atlantic Ocean, next to the African coast. It is situated within the equatorward travelling Canary Current.

This area has a high mesoscale activity. Some important features of this area are the African Upwelling System, the filaments originated by the upwelling, and long-lived cyclonic and anticyclonic mesoscale eddies. The generation of these mesoscale eddies, by the perturbation of the Canary Current caused by the islands, has been largely studied.

The aim of this work is to use a novel Hybridisable Discontinuous Galerkin (HDG) oceanic model, based on Finite Elements, in addition to real in situ and satellite data, in order to study different generation mechanisms and the evolution of the mesoscale eddies south of the Canary Islands.

How to cite: Hernández García, I., Oliver Serra, A., and Machín Jiménez, F.: Use of HDG oceanic models to study eddy formation in coastal upwelling areas, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6336, https://doi.org/10.5194/egusphere-egu23-6336, 2023.

12:10–12:20
|
EGU23-9614
|
On-site presentation
Ángel Rodríguez-Santana, Borja Aguiar-González, Ángeles Marrero-Díaz, Luis Pablo Valencia, and Francisco Machín

During the austral midsummer near the South Shetland Islands, an interdisciplinary cruise (COUPLING) was carried out in January 2010 (Sangrà et al, 2014). For this study we selected one transect of 12 stations across the Central Bransfield Strait with vertical profiles of Conductivity, Temperature and Depth (CTD) and Acoustic Doppler Current Profiler (ADCP). Vertical profiles of microstructure turbulence were measured at stations of the transect located in specific dynamic features (two fronts: Bransfield Front and Peninsula Front; and an anticyclonic eddy) from a free-fall turbulence profiler. Using CTD and ADCP data, we computed the Thorpe scales, gradient Richardson numbers and density ratios that were compared with microstructure data.

We found that the most active turbulent layer was observed within the upper mixed layer (UML) of the anticyclonic eddy between stations 3 and 6 of the transect. However, intense inversions below the UML were found at the axis of the Peninsula Front (station 9). In the region of the Bransfield Front, it is noteworthy that there were obtained relative high values of kinetic energy dissipation rate (ε) with mixing processes due to vertical shear instabilities and double diffusion.  With this work, we have a deeper understanding of the mixing processes in the Bransfield Strait, which will allow a better estimation of the vertical fluxes of heat, salt and nutrients for this region.

Key words:

Bransfield Strait, Diapycnal Mixing, Microstructure Turbulence.

References:

Sangrà, P., C. García-Muñoz, C.M. García, A. Marrero-Díaz, C. Sobrino, B. Mouriño-Carballido, B. Aguiar-González, C. Henríquez-Pastene, A. Rodríguez-Santana, L. M. Lubián, M. Hernández-Arencibia, S. Hernández-León, E. Vázquez, S.N. Estrada-Allis (2014). Coupling between upper ocean layer variability and size-fractionated phytoplankton in a non-nutrient-limited environment. Marine Ecology Progress Series, 499, 35-46.

How to cite: Rodríguez-Santana, Á., Aguiar-González, B., Marrero-Díaz, Á., Valencia, L. P., and Machín, F.: Diapycnal Mixing in the Bransfield Strait, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9614, https://doi.org/10.5194/egusphere-egu23-9614, 2023.

12:20–12:30
|
EGU23-10130
|
On-site presentation
Francis Poulin

The Gulf Stream plays an important role in the meridional overturning circulation in the North Atlantic, one of the primary mechanism by which the warm, salty water can move from low to high latitudes. It also provides closure to the North Atlantic subtropical gyre circulation as a western boundary current and makes Western European countries much warmer by transporting warm water across the ocean.

Observational data of the Gulf Stream (along the Oleander line, between New Jersey and Bermuda) has found that its stream-wise velocity skews to the right with increasing depth. This has motivated our development of an idealized model of a laterally skewed Gulf Stream jet that is surface trapped overlying a flat bottom. The nonlinear evolution of this unstable asymmetric jet is investigated using the Oceananigans.jl library for multiple values of a skewness parameter. The results show that the maximum growth rate has a nonlinear dependency on the skewness parameter, though weak and strong skew tend to be stabilizing and destabilizing, respectively. 

How to cite: Poulin, F.: The stability of an asymmetric slice of the Gulf Stream, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10130, https://doi.org/10.5194/egusphere-egu23-10130, 2023.

Lunch break
Chairpersons: Kevin Lamb, Verónica Morales Márquez, François G. Schmitt
14:00–14:10
|
EGU23-16032
|
ECS
|
On-site presentation
Han Wang, Bia Villas Bôas, Jacques Vanneste, and William Young

Ocean currents have been observed to impact the spatial distribution of significant wave height (hereafter "Hs") of surface gravity waves profoundly, with implications for air-sea fluxes, extreme waves, and error budget in satellite observations. In this work, we derive analytic formulas that relate Hs to current velocities under the weak-current approximation, cross-validate the results with WAVEWATCH III, and find implications potentially useful for observational and modelling studies. 

First, we show that when swell-like surface waves interact with a localized current, caustics, where rays cross in real space, do not lead to singularities in Hs if the wave energy spectra have a realistic directional spread in wavenumber space. This has implications for understanding the origin of freak waves, where caustics have been postulated as a possible source. Then, we consider another regime where weak turbulent flows are considered. Analytic formulas are found that deterministically link the patterns of Hs to currents. The formulas' statistical counterparts are applied to study how the spectral slopes, amplitudes and directionality of Hs are related to currents. Our results demonstrate that the variations of Hs are controlled by the rotational component of the currents, suggesting the potential of using information from surface wave to infer current properties in real observations, or vice versa.

How to cite: Wang, H., Villas Bôas, B., Vanneste, J., and Young, W.: Imprint of ocean currents on signicant wave height, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16032, https://doi.org/10.5194/egusphere-egu23-16032, 2023.

14:10–14:20
|
EGU23-2594
|
ECS
|
On-site presentation
Sévan Rétif, Maria-Eletta Negretti, Achim Wirth, and Axel Tassigny

We present experimental results from large-scale laboratory experiments of rotating downslope gravity currents intruding into a two-layer stratified ambient performed in the Coriolis Rotating Platform in Grenoble. By means of PIV velocity and conductivity data for the density measurement, we show that mixing occurs mostly on the slope area during the descent rather than once the current has penetrated the stratified ambient, where the Richardson number remains above the stability threshold of 1/4. Looking at the time evolution of the vertical density profile in the stratified receiving ambient, two distinct mixing regimes can be identified, the first issued by laminar transport through Ekman dynamics, the second by turbulent transport due to intermittent cascading events. Vertical density gradients reveal a linear piece-wise dependence on the density anomaly, highlighting an advection-diffusion process as proposed by the theoretical model of Munk & Wunsch (1998). If the gravity current flow is laminar on the slope, the structure shows a linear variation of the density with depth ; For the turbulent transport regime characterized by intermittent cascades, an exponential shape is rather observed. The shape of the density structure allows to estimate bulk mixing coefficients and entrainment velocities at the top and the bottom of the intruding gravity current, which can be further compared to oceanographic observational data.

How to cite: Rétif, S., Negretti, M.-E., Wirth, A., and Tassigny, A.: Laminar transport and turbulent cascades in downslope rotating gravity currents., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2594, https://doi.org/10.5194/egusphere-egu23-2594, 2023.

14:20–14:21
14:21–14:31
|
EGU23-4236
|
On-site presentation
Yaron Toledo, Rotem Soffer, and Eliezer Kit

Realistic currents in seas and oceans are almost always changing in depth thus indicating on the presence of shear in the mean ambient flow. However, analysis methodologies interpreting directional wave data gathered by in-situ measurement devices such as: buoys, pressure gauges and Acoustic Doppler Current Profilers (ADCPs) utilize potential irrotational flow theory which cannot account for the rotational shearing currents. The effects of shearing currents on the wave direction estimations were studied on synthetic ADCP data of waves propagating in a predetermined spread. The synthetic data was generated employing the Rayleigh Boundary Value Problem (BVP) and a selected ambient current profile. The potential data processing led to significant errors in wave directional spread estimation for common shearing currents (~10°  in mean wave direction for the presented example). This finding is of great importance, as it addresses the influence of an ambient current profile on wave propagation direction. The obtained results suggest that there is an uncertainty with the confidence of any wave directional spread ever presented by in-situ wave measurement devices.

A new methodology was developed for estimating directional wave spectra based on rotational flow physics by acquiring new terms emanate from wave-shearing current interaction governing equations. This included a derivation of new numerical transfer functions for the fluid’s physical properties based on the Rayleigh BVP. Then, by applying classical cross- and auto-spectral analysis on time-series data sets, the directional spread function was numerically reconstructed. The newly derived data processing methodology was applied to the same synthetic ADCP data sets. It was found to be capable of reconstructing the spread with great accuracy (0.4° in mean wave direction for the presented example). In addition, to modeling and synthetic data, field measurement data from several campaigns were also analyzed showing the importance of accounting for the vertical shear. This makes it a prominent methodology for estimating directional wave spectra in realistic oceanic conditions.

How to cite: Toledo, Y., Soffer, R., and Kit, E.: New method of directional spectrum estimation accounting for ambient shearing currents, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-4236, https://doi.org/10.5194/egusphere-egu23-4236, 2023.

14:31–14:41
|
EGU23-12946
|
ECS
|
On-site presentation
|
|
Andreas Alexandris-Galanopoulos and Kostas Belibassakis

Even though the majority of the classical water wave theory is restricted to potential flows, vortical flows are abundant in nature. This necessitates the need for the development of accurate and efficient methods for the simulation of rotational phenomena, such as the propagation of waves over bathymetry in the presence of a sheared current [1, 2].

In the present work, a numerical method for the free surface Euler system with constant density and general bathymetry is developed within the framework
of classical Computational Fluid Dynamics (CFD). Specifically, using the well known σ coordinate system, a layer-wise integration followed by an operator
splitting is performed. The resulting horizontal advection component is, treated as a multilayered Shallow Water Equations (mSWE) system (see, e.g. [3]) 
and it is solved with a conventional Finite Volume solver. The vertical counterpart (that works similar to remeshing operator) regulates if the system is treated with a Lagrangian or an Eulerian approach. Finally, the dynamic pressure component coupled with the incompressibility constraint is treated using the well-known projection of Chorin [4].

The method’s main advantages stem from its highly modular character that makes it both robust and easy to implement. The method’s performance is tested in the case of waves propagating on top of a sheared current. Results concerning the dispersion and propagation characteristics for general current profiles are presented and compared with other models [1,2,5].

References
[1] Julien Touboul and Kostas Belibassakis. A novel method for water waves propagating in the presence of vortical mean flows over variable bathymetry. Journal of Ocean Engineering and Marine Energy, 5(4):333–350, 2019
[2] Kostas Belibassakis and Julien Touboul. A nonlinear coupled-mode model for waves propagating in vertically sheared currents in variable
bathymetry—collinear waves and currents. Fluids, 4(2):61, 2019.
[3] Fracois Bouchut and Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical
Systems-Series B, 13(4):739–758, 2010.
[4] Zhe Liu, Lei Lin, Lian Xie, and Huiwang Gao. Partially implicit finite difference scheme for calculating dynamic pressure in a terrain-following coordinate
non-hydrostatic ocean model. Ocean Modelling, 106:44–57, 2016. [5] Ellingsen SA, Li Y (2017) Approximate dispersion relations for waves on arbitrary shear flows. J Geophys Res Oceans 122(12):9889–9905
[5] Ellingsen SA, Li Y (2017) Approximate dispersion relations for waves on arbitrary shear flows. J Geophys Res Oceans 122(12):9889–9905

How to cite: Alexandris-Galanopoulos, A. and Belibassakis, K.: A Semi-Lagrangian solver for the free surface Euler system with application to rotational wave flows, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12946, https://doi.org/10.5194/egusphere-egu23-12946, 2023.

14:41–14:51
|
EGU23-14457
|
On-site presentation
Paolo Pezzutto

It is known that the wave action propagated in spectral wave models is a small steepness approximation of the observable wave action. For relevant steepness, we need higher order corrections to get a proper representation of the sea states [Janssen, 2009]. For the same reasons, other diagnostic variables should be corrected. Based on the fifth order Stokes solution obtained by Fenton [1985], Jonsson and Arneborg [1995] showed the importance of higher order corrections for determining the energy properties of long crested waves.

Proceeding from Longuet-Higgins and Stewart [1960], assuming a mean stream velocity, we see that how, using Krasitskii [1994] canonical transformations, we can derive general 2D weakly non linear corrections to the rate of transfer of energy across a surface fixed in space. For a monochromatic wave, the resulting equations are compared with truncated expressions given by Jonsson and Arneborg [1995], confirming that second order contributions (in terms of wave energy) can be relevant, depending on steepness and relative water depth.
After applying a proper statistical closure, the derived equations can be used to correct the wave energy properties of wave models spectra, for example to refine the informations transferred to a coupled circulation model.

John D. Fenton. A Fifth-Order Stokes Theory for Steady Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2):216–234, 1985. ISSN 0733-950X.
Peter a. E. M. Janssen. On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech., 637(November):1–44, 2009. ISSN 1469-7645.
Ivar G. Jonsson and Lars Arneborg. Energy properties and shoaling of higher-order stokes waves on a current. Ocean Engineering, 22(8):819–857, 1995. ISSN 00298018.
Vladimir P. Krasitskii. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech., 272(-1):1–20, 1994. ISSN 0022-1120.
M. S. Longuet-Higgins and R W Stewart. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8(04): 565–583, 1960.

 

How to cite: Pezzutto, P.: Weakly nonlinear wave energy flux and radiation stress, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14457, https://doi.org/10.5194/egusphere-egu23-14457, 2023.

14:51–15:01
|
EGU23-16723
|
On-site presentation
Anne-Claire Bennis, Lucille Furgerot, Pascal Bailly du Bois, Emmanuel Poizot, Yann Méar, and Franck Dumas

Due to the climate change, it is necessary to modify the energy modes of production. The mix energetic, based on renewable energies as tidal currents, is one of the solutions to decrease the energy production carbon footprint. This study focuses on hydrodynamic interactions in Alderney Race (France), which is the most energetic tidal site in Western Europe. The impact of a winter storm occurring during spring tide is assessed thanks to numerical modeling with a 3D fully-coupled wave-current model and in-situ data. Firstly, an analysis of the impacts of the storm on the wave field and the current effects on waves is performed. Then, the modifications of the current and tidal stream energy caused by waves are discussed. After a successful validation step with excellent PBIAS and R2 scores, the main finding are : i) although the current intensity is strong (around 3-4m/s), wave effectssignificantly change the vertical profile of the current, with a reduction of the PBIAS by a factor of 1.78 between simulations with and without wave effects, ii) ocean waves affect the tidal assymmetry, with a flood current whose intensity is 13% higher than for the ebb current, inducing a decrease of 30% in the tidal stream energy, iii) the flow is very sensitive to the angle between the directions of propagation of waves and current, with an acceleration or a reduction of the velocity, as observed in the presence of a 3D turbulent structure, iv) current effects on waves cause a wavenumber shift, changes in significant wave height (modulated by tide), wave direction due to refraction and an increase of the energy transfer from waves to ocean ascribed to the wave breaking. By a feedback mechanism, the modifications of the wave field by current and water level significantly alter the flow with a decrease of its velocity when waves propagate against current. This study shows that the 3D wave-current interactions need to be considered during a storm even during a spring tide event where currents are the strongest.

How to cite: Bennis, A.-C., Furgerot, L., Bailly du Bois, P., Poizot, E., Méar, Y., and Dumas, F.: Three-dimensionnal Wave-Current Interactions can significantly affect a Strong Tidal Current in a Complex Environment: Application to Alderney Race, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16723, https://doi.org/10.5194/egusphere-egu23-16723, 2023.

15:01–15:02
15:02–15:12
|
EGU23-17324
|
solicited
|
Virtual presentation
Bernhard Mehlig, Fabien Candelier, Jingran Qiu, Lihao Zhao, and Greg Voth

A small spheroid settling in a quiescent fluid experiences an inertial torque that aligns it so that it settles with its broad side first. Here we show that an active particle experiences such a torque too, as it settles in a fluid at rest. For a spherical squirmer, the torque is T = -9/8  mf (vs(0)  x vg(0)), where vs(0)  is the swimming velocity, vg(0) the settling velocity in the Stokes approximation, and mf the equivalent fluid mass. This torque aligns the swimming direction against gravity: swimming up is stable, swimming down is unstable. This talk is based on Candelier, F., Qiu, J., Zhao, L., Voth, G., & Mehlig, B. (2022). Inertial torque on a squirmer. Journal of Fluid Mechanics, 953, R1.

How to cite: Mehlig, B., Candelier, F., Qiu, J., Zhao, L., and Voth, G.: Inertial torque on a squirmer, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17324, https://doi.org/10.5194/egusphere-egu23-17324, 2023.

15:12–15:22
|
EGU23-6774
|
ECS
|
On-site presentation
Francesco Michele Ventrella, Filippo De Lillo, Guido Boffetta, Massimo Cencini, Jean-Luc Thiffeault, and Nimish Pujara

Planktonic microorganisms immersed in a fluid interact with the ambient flow, altering their trajectories. In surface gravity waves, a common goal for microswimmers is vertical migration. By modeling phytoplankton as spheroidal bodies with a certain swimming velocity, we investigate how the combination of swimmer's dynamical characteristics and fluid velocity gradients affect the motion. We investigate the case of prolate, negative buoyant swimmers. We consider also the case of gyrotactic swimmers. We find that it is possible for microswimmers to be trapped at a finite depth below the sea level. This phenomenon is due to the coupling between swimming, gyrotaxis and flow-induced reorientations. The trajectories obtained by numerical simulations, indicate that the dynamics consist of fast oscillations at the surface wavelength superposed with a slower trend at a longer timescale. This suggests using a multiple time-scale expansion to remove the fast oscillations. The presence of stable fixed points for the slow dynamics allows the trapping behaviour.

How to cite: Ventrella, F. M., De Lillo, F., Boffetta, G., Cencini, M., Thiffeault, J.-L., and Pujara, N.: Prolate microswimmer in surface gravity waves, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6774, https://doi.org/10.5194/egusphere-egu23-6774, 2023.

15:22–15:32
|
EGU23-1200
|
On-site presentation
Stefano Berti, Vinicius Beltram Tergolina, Enrico Calzavarini, and Gilmar Mompean

Plankton dynamics are controlled by an often subtle interplay between biological and physical processes. Among the latter, fluid transport is known to play a prominent role. Field studies have, e.g., provided evidence of the effects of turbulent-convection upwelling and downwelling motions on phytoplankton survival. Recent numerical investigations have emphasized, in addition, that relatively large-scale coherent flow features on the vertical can considerably hinder survival and thus negatively impact plankton blooms.

In nutrient-rich polar marine environments phytoplankton growth is critically limited by light availability, especially in waters that are partially covered by ice. In these conditions, the heterogeneity of the light intensity distribution, in association with a large-scale coherent fluid flow, can give rise to complex biological dynamics. In the Arctic ocean, several studies reported under-ice phytoplankton blooms that were initiated by the onset of ice melt. Nevertheless, it is still only partially known how such blooms are controlled by the interaction between different factors, such as the increase of light transmittance, leads (openings in the ice), convective mixing, and biological processes. Under-ice blooms are expected to become more common in the future, due to increasingly thinner and dynamic ice coverage, and thus more frequent lead formation. This could significantly alter primary production, and have important consequences on local marine food webs.

In this work we consider an advection-reaction-diffusion model of phytoplankton light-limited vertical dynamics in the presence of convective transport, intended as an idealized representation of nonuniformly ice-covered polar waters. Specifically, we assume that the incident light intensity at the surface is horizontally modulated by the presence of opaque obstacles, giving rise to regions of the water column that are characterized by different production regimes. We focus on the impact of advection, and more generally of the different transport processes occurring in the fluid, on the average biomass. By means of numerical simulations we show that convective motions may be harmful to under-ice blooms, in agreement with previous findings. In the present setup, such effect depends on the positions of the surface obstacles with respect to the upwelling and downwelling flow regions. We further find, however, that the sinking speed, due to the density difference between phytoplankton organisms and water, also plays an important role, which depends on how it adds to the flow. While small, the sinking speed has a measurable impact on the growth dynamics of the population and can even be critical for its survival, which may have ecological relevance, as different phytoplankton species have different densities and, hence, different settling velocities.

How to cite: Berti, S., Tergolina, V. B., Calzavarini, E., and Mompean, G.: Light-limited dynamics of sinking phytoplankton in a convective flow model with ice-covered waters, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1200, https://doi.org/10.5194/egusphere-egu23-1200, 2023.

15:32–15:42
|
EGU23-16913
|
ECS
|
On-site presentation
|
Laurin Steidle

Phytoplankton populations have been in a steep decline in the elbe estuary since several decades. Previous studies using concentration based biochemical models helped to further the understanding of the ecosystem in general but fail to pinpoint specific reasons due to their high complexity.

We approach this problem with a novel langrangian model. By explicitly simulating phytoplankton trajectories, we are able to examine bathymetry-related effects. These effects can play a big role in the Elbe estuary due the high average depth in the navigational channel of Hamburg’s harbor.  In detail, or model represent processes like turbulent dispersion, vertical migration and stranding mechanics to study this problem. To our knowledge this is the first time that this problem is tackled with such a method that includes biological processes in an estuarine context.

We will present results from experiments looking at Phytoplankton retention mechanics to avoid outwashing and depth related mortality in the navigational channel.

How to cite: Steidle, L.: Phytoplankton trajectories in the Elbe estuaries - examinig retention and die-off in the Hamburg harbor, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16913, https://doi.org/10.5194/egusphere-egu23-16913, 2023.

Posters on site: Mon, 24 Apr, 16:15–18:00 | Hall X4

X4.96
|
EGU23-1470
Marek Stastna

In late winter many lakes are iced over, and hence remain cut off from the mechanical forcing due to wind.  At the same time, strong radiative forcing modifies the inverse stratification associated with wintertime conditions.  The inverse stratification occurs due to the fact that freshwater has a temperature of maximum density (around 4 degrees Centigrade) and the equation state of freshwater is thus nonlinear.  In this talk I will demonstrate that this nonlinearity has a profound influence on the characteristics of nonlinear internal solitary-like waves in the cold water regime.  In particular, predcitions of waves made using a piecewise linear density profile yield waves with the opposite polarity to those calculated using temperature profiles and the full nonlinear equation of state.  I will present results based on the Dubreil-Jacotin Long theory, but similar conclusions can be made based on weakly nonlinear (KdV) theory.  Time permitting I will discuss implications of these results for shoaling.

How to cite: Stastna, M.: Nonlinearity of the equation of state effects dynamics of nonlinear internal waves in late winter lakes, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1470, https://doi.org/10.5194/egusphere-egu23-1470, 2023.

X4.97
|
EGU23-1554
Kevin Lamb

Under appropriate background conditions internal solitary waves may have surface or subsurface cores. Both types of waves have been observed in the ocean. Solutions of the Dubreil-Jacotin-Long equation predict cores with closed isopycnals and, in a reference frame moving with the wave, closed streamlines. In numerical simulations of a time-evolving field these cores are unsteady and leaky: fluid is continually being entrained into the core and leaking out of the rear of the core. In this talk I will present results of the interaction of two internal solitary waves, one with a core over-taking a smaller wave without a core. In general, during the interaction the large ISW decrease in amplitude while transferring energy to the smaller ISW. During this process the large ISW loses its core and the fluid inside the core is left behind. The smaller wave grows in amplitude and forms a new core. In many cases the final small ISW is considerably smaller than the initial small ISW while the larger ISW may be larger than the iniitial ISW. ISW energy is also transferred to small amplitude internal waves. 

How to cite: Lamb, K.: Interaction of Fully-Nonlinear Internal Solitary Waves with Cores, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1554, https://doi.org/10.5194/egusphere-egu23-1554, 2023.

X4.98
|
EGU23-1766
Keisuke Nakayama and Kevin Lamb

While the existence of breathers in the ocean is not clearly revealed, Rouvinskaya et al. (2015) suggested the possibility that breathers occurred in the Baltic Sea. In three-layer symmetric stratifications with the same density difference across each interface, the modified KdV equation (the Gardner equation with the quadratic nonlinear coefficient equal to zero) predicts that breathers exist. Therefore, the soliton-like characteristics of fully nonlinear breathers must be better understood. Thus, this study used fully nonlinear numerical simulations to investigate breather interactions by analysing overtaking collisions of two breathers in a three-layer fluid. As a result, an overtaking collision of two breathers is almost elastic when the ratio of the breather amplitude to the upper and lower layer thickness is smaller. Furthermore, the collision is found to remove the mode-2 structure, resulting in a significant role in forming breathers.

How to cite: Nakayama, K. and Lamb, K.: Numerical analysis of breather interactions, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-1766, https://doi.org/10.5194/egusphere-egu23-1766, 2023.

X4.99
|
EGU23-623
Luis Zavala Sanson

This work addresses the effects of time-dependent, mesoscale turbulence on the wind-driven ocean circulation in a closed basin with variable topography. The main results concern the so-called Neptune effect, which involves the generation of persistent flows correlated with topography, but in this case, such currents are formed in the presence of a continuous, stochastic forcing. Numerical simulations of a single-layer fluid with sloping bottom topography near the boundaries are performed. The forcing is a suitable combination of a steady, basin-scale wind that generates the classical western-intensified anticyclonic gyre, plus a shorter, time-dependent forcing that injects energy at a narrow range of scales. Two contrasting situations are considered. First, in the absence of large-scale forcing, the turbulence generates a cyclonic flow that follows the geostrophic contours around the basin. This configuration corresponds to the most probable state equivalent to that expected in statistical equilibrium. Second, the resulting mean circulation is studied when the large and small-scale forcing terms are considered together. The main consequence is the alteration of the anticyclonic gyre due to the turbulent-induced cyclonic circulation. This result implies that large-scale, semi-steady circulations might be altered according to the turbulence characteristics.

How to cite: Zavala Sanson, L.: Effects of mesoscale turbulence on the wind-driven circulation in a closed basin with topography, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-623, https://doi.org/10.5194/egusphere-egu23-623, 2023.

X4.100
|
EGU23-5470
|
ECS
Alexandra Cuevas, Vincent Rey, Julien Touboul, and Fabrice Ardhuin

Wave conditions from the open sea to the coast, provide necessary information, the good understanding and modeling of coastal dynamics, the design of coastal engineering structures coastal engineering structures, for navigation or the flooding risks evaluation. It is also a potential way to access information present below the surface. Refraction, diffraction and reflection of waves are not only forced by variations in bathymetry but also by the presence of currents. However, the effects of current in propagation models have long been limited to the consideration of homogeneous current in the water column. Nevertheless, currents are usually observed to be sheared vertically by wind, tides or waves. When wave propagate in the presence of currents their celerity is modified. It is also affected by the vertical structure of the current.

This work proposes and discusses methods for reconstructing current fields from wave data based on synchronous analysis of wave spectra at different points in space. We consider here the 2D case of progressive or partially stationary waves in the presence of homogeneous currents or with a vertical sheared profile. The study is based on data from experiments carried out at the Bassin de Génie Océanique FIRST(BGO), for progressive or partially stationary waves in the framework of the ANR project MORHOC'H 2. These test campaigns allowed us to test the sensitivity of the wave’s phase evolution during its propagation in order to estimate the feasibility of reconstructing either constant or sheared currents in the water column. Under the assumption of a progressive wave, the study of the phase evolution shows a significant influence of the current, allowing to reach the intensity of a uniform current. The calculated phase evolution in the presence of sheared current is consistent with the theory, but for small values of shear, the phase velocity changes are much smaller, making the method more sensitive to "noise". Furthermore, for a partially stationary wave, a significant impact of its phase evolution is observed in the propagation direction of the incident wave even for weak reflections, making it necessary to include this parameter in the reconstruction of currents from synchronous wave measurement data.

Acknowledgements:

The DGA is thanked for funding the AID thesis grant of Alexandra CUEVAS, as well as for the ANR grant: ANR-21-ASM1-003.

How to cite: Cuevas, A., Rey, V., Touboul, J., and Ardhuin, F.: Bassin study of vetically sheared currents from the dispersion of surface gravity wave, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5470, https://doi.org/10.5194/egusphere-egu23-5470, 2023.

X4.101
|
EGU23-10892
|
ECS
|
Ramana Patibandla, Anubhab Roy, and Manikandan Mathur

In this work we study resonant triad interactions among discrete internal wave modes in a finite-depth, two dimensional uniformly stratified shear flow. The primary wave-field is considered to be a linear superposition of various internal wave modes. The weakly-nonlinear solution of the primary wave-field consists of a superharmonic (2ω) part and a mean-flow part (ω=0).  For a given modal interaction, we study the location in the frequency (ω) -Richardson number (Ri) parameter space where the amplitude of the superharmonic part attains a maximum i.e, where two primary internal wave modes of modenumbers 'm' and 'n' resonantly excite a secondary wave mode of modenumber 'q'. Using asymptotic theory we show that, unlike the case of no-shear, the presence of weak-shear, doesn't require the vertical wavenumber condition to be satisfied for resonance. This entails an activation of several new resonances in the presence of arbitrarily weak shear, where only the frequency and the horizontal wavenumber conditions are satisfied. This also leads to the possibility of self-interaction and resonances close to ω = 0. A similar asymptotic theory can be extended to other inhomogeneities (eg: non-uniform stratification) as well. For an exponential background shear flow, we track the location of these resonances in the (ω, Ri) parameter space and present their behaviour.

How to cite: Patibandla, R., Roy, A., and Mathur, M.: Triadic resonance of internal wave modes with background shear, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10892, https://doi.org/10.5194/egusphere-egu23-10892, 2023.

X4.102
|
EGU23-9604
Kateryna Terletska, Vladimir Maderich, and Elena Tobisch

Internal wave-driven mixing is an important factor in the balance of heat and salt fluxes in the Polar Regions. The interaction between internal waves and ice cover in these areas of the ocean is complex and depends on both the characteristics of the ice and the characteristics of internal waves. Harsh environment in Arctic Ocean obstructs direct field observations of internal solitary waves thus, numerical modellings are an essential tool to overcome this shortcoming. The numerical three dimensional, free-surface, non-hydrostatic model for stratified flows using the Navier-Stokes equations in the Boussinesq approximation so called NH-POM was used for simulations of transformation of internal solitary waves under ice cover edge. As the result of the research it was shown, that propagation of internal solitary waves under edge of the ice cover may lead to their destabilization through overturning and breaking events. Such parameters as ice cover depth and internal waves amplitudes were responsible for the evolution and disintegration of an ISW beneath the ice cover while the boundary friction beneath the ice cover had little effect. During the interaction, maximum energy loss could reach about 60% near the ice edge. Interaction of ISWs with the ice edge significantly enhanced the turbulent dissipation and consequentially could potentially accelerated melting of the ice. It was suggested that the blocking parameter B, that is ratio of incident amplitude to the depth of the upper layer beneath the ice, controls the transfer of energy across the ice edge, that is, more energy is reflected if the ratio increases. When the ice depth decreased, the ice-ISW interaction and resultant dissipation weakened.

How to cite: Terletska, K., Maderich, V., and Tobisch, E.: Transformation of internal solitary waves under ice cover edge, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-9604, https://doi.org/10.5194/egusphere-egu23-9604, 2023.

X4.103
|
EGU23-17039
Observations of turbulence on an algal reef under spectral waves and tidal currents
(withdrawn)
Zhi-Cheng Huang
X4.104
|
EGU23-17262
|
ECS
|
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran

Tides and internal tides (IT) in the ocean can significantly affect local to regional ocean temperature and even sea surface temperature (SST), via processes such as vertical mixing, vertical advection and transport of water masses. Offshore of the Amazon River, IT have already been detected and studied; however, their impact on temperature, SST and associated processes are not known in this region. In this work, we use high resolution (1/36°) numerical simulations with and without the tides from an ocean circulation model (NEMO) which explicitly resolves the internal tides (IT), to assess how they can affect ocean temperature in the studied area. We distinguish the analysis for two contrasted seasons, from April to June (AMJ) and from August to October (ASO), since the seasonal stratification off the Amazon River modulates the IT’s response and their influence in temperature.  

The IT are well reproduced by the model, and are in good agreement with observations, for both their generation and their propagation. The simulation with tides is in better agreement with satellite SST data compared to the simulation without tides. During ASO season, stronger meso-scale currents, deeper and weaker pycnocline are observed in contrast to the AMJ season. Results show that the observed coastal upwelling during ASO season is well reproduced by the model including tides, whereas the no-tide simulation is too warm by +0.3 °C at sea surface. In the subsurface above the thermocline, the tide simulation is cooler by -1.2 °C, and warmer below the thermocline by +1.2 °C compared to the simulation without the tides. The study further highlights that the IT induce vertical mixing on their generation site along the shelf break and on their propagation pathways towards the open ocean. This process explains the cooler temperature at the ocean surface and in the subsurface water above the thermocline and a warming in the deeper layers (below the thermocline). The surface cooling induced in turn an increase of the net heat flux from the atmosphere to the ocean surface, which could induce significant changes in the local and even for the regional tropical Atlantic atmospheric circulation and precipitation. We therefore demonstrate that IT, mainly via vertical diffusivity along their propagation pathways of approximately 700 km offshore, and tides over the continental shelf, play a key role on the temperature structure off the Amazon River mouth, particularly in the coastal cooling enhanced by IT.  

How to cite: Assene, F., Koch-Larrouy, A., Dadou, I., Tchilibou, M., Morvan, G., Chanut, J., Vantrepotte, V., Allain, D., and Tran, T.-K.: Internal tides off the Amazon shelf: importance to structure ocean's temperature during two contrasted seasons, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-17262, https://doi.org/10.5194/egusphere-egu23-17262, 2023.

X4.105
|
EGU23-16425
|
ECS
Pavel Chernyshov, Michael Stresser, Ruben Carrasco, and Jochen Horstmann

Wavelet- and Fast Fourier Transform (FFT)-based methods for bathymetry retrieval from X-band radar image sequences are compared and analyzed. Both methods utilize the similar idea of the waves' phase shift estimation using cross-spectral analysis. Within the FFT-based approach the corresponding technique is used to determine wave vector's components from the image sequence frequency decomposition. The last means that the time FFT is applied to the original image sequence. Then for each frequency slice the corresponding wavenumber is derived applying the cross-spectrum analysis of the one pixel shifted images in the corresponding spatial direction. In such a way a set of wavevector-frequency (k, ω) pairs are formed and filtered according to a confidence criterion that reflects the stability of the local phase pattern. In the case of a wavelet-based method the corresponding cross-spectral analysis is applied to the 2D Continuous Wavelet Transform (CWT) directional complex spectra for pairs of successive images, resulting in a set of wavevector-celerity (k, c) pairs. Further, the corresponding set of pairs are fitted to the unknown depth using nonlinear least-square method and finite water depth linear dispersion relationship as a model. Weights proportional to the spectral power density and confidence values are used in the fitting process for the wavelet- and FFT-based methods correspondingly. Furthermore, both methods are verified by applying it to stochastic simulations of corresponding shoaling sea elevation image sequences and real X-band radar image sequences collected near the Hofn tidal inlet (Iceland). For the wave simulations, a linear solution of a mild slope equation is utilized. In order to accout for the effects ofthe ambient currents, a ray-tracing technique is applied. As a testing case, the shoaling of an incident JONSWAP spectrum-based wavefields are evaluated both on the following and opposing currents. A radar image model including tilt and shadowing modulations together with speckle noise is further applied to the modeled surface elevations. Both methods are able to reconstruct the original bathymetry for intermediate to shallow water depths (kph<1.2) with plausible accuracy both for all the synthetic cases (with varied probing geometries, bottom topography, ambient current, and sea state conditions) and real radar data case. In the last case, the accuracy of the FFT-based method is on the level 0.7-0.9 m in terms of the mean absolute error value with fairly small bias the standard deviation of the error is also less than 1 m in the whole area studied except the tidal channel, where the depth gradients are significantly larger. The wavelet-based method showes a higher bias with comparable mean absolute error and standard deviation.

How to cite: Chernyshov, P., Stresser, M., Carrasco, R., and Horstmann, J.: Comparison of wavelet- and FFT-based bathymetry retrieval methods and its application to nearshore X-band radar image sequenses, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16425, https://doi.org/10.5194/egusphere-egu23-16425, 2023.

X4.106
|
EGU23-14358
Laboratory evidence of modifications to the Benjamin-Feir instability by shear flow
(withdrawn)
Olav Rømcke, Ben Smeltzer, Luc Lenain, Nick Pizzo, and Simen Ådnøy Ellingsen
X4.107
|
EGU23-16217
Amine Benbelkacem, François Schmitt, and Yongxiang Huang

The China France Oceanography Satellite (CFOSAT) was launched in October, 2018 and records over the oceans the wind field as well as the ocean waves. We consider here the ocean wave data, which are given through the significant wave height (Hs). We analyse along-track fluctuations of $Hs$ by considering its fluctuations of the form $y_r = \Delta_r Hs = Hs(x+r)-Hs(x) $, with values of the spatial scale $r$ between 12.5 km and a global and large scale of 2000 km. For this we consider a cumulant approach: we estimate the cumulant generating function (of $\log y_r$) $\Psi(q) = \log <y_r^q>$. This function is considered in a log-stable framework, where its development is non-analytical of the form $\Psi(q)= C_1 q + C_{\alpha} q^{\alpha}$, where $C_1$ is the first cumulant ($C_1 = < \log y_r>$), $0< \alpha \leq 2$ is the non-analycity parameter and $C_{\alpha}$ a parameter. The analysis is done by partionning the global ocean into several oceans: Indian ocean, South and North Pacific, South and North Atlantic. The statistics of the three parameters are considered over the scale $r$ and for each ocean. This provides a global view of the significant wave height multi-scale fluctuations and is complementary to a previous analysis done using Fourier spectral analysis (Gao et al 2021).

How to cite: Benbelkacem, A., Schmitt, F., and Huang, Y.: A cumulant analysis of ocean waves fluctuations over the global ocean, using CFOSAT data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16217, https://doi.org/10.5194/egusphere-egu23-16217, 2023.

X4.108
|
EGU23-10079
|
ECS
|
Luis P. Valencia, Ángel Rodríguez-Santana, Antonio Martínez-Marrero, Nadia Burgoa, Carmen Gordo, Diana Grisolía, and Ángeles Marrero-Díaz

The Cape Verde Frontal Zone (CVFZ) separates North and South Atlantic Central Waters (NCAW and SACW, respectively) in the eastern North Atlantic Subtropical Gyre. This front is described as a strong meandering thermohaline front near Cape Blanc at latitudes close to 20ºN. It shows sharp gradients in temperature and salinity in the upper 600 m with the presence of large lateral intrusions. One important aspect of the CVFZ is the compensating character of the temperature and salinity fields, which cause horizontal density gradients to be relatively small across the front. This frontal feature is an important factor in reducing vertical shear of horizontal velocity in some parts of the frontal region, allowing double diffusion processes to be one of the main causes of the observed diapycnal mixing. However, the presence of large lateral intrusions could favor diapycnal mixing induced by vertical shear instabilities which could overcome double diffusion effects. Despite its importance, studies in the CVFZ with direct turbulence measurements focused on diapycnal mixing and its relation with lateral thermohaline intrusions are scarce. In this study, we use microstructure measurements from a vertical free-falling profiler together with CTD-O and SADCP records of two high spatial resolution (each oceanographic stations ~9 km apart) oceanographic transects along and across the CVFZ (~300 and 100 km, respectively) during November of 2017. An assessment of the turbulent and double-diffusive mixing related to the lateral intrusions was made, identifying the latter through the diapycnal spiciness curvature method. Lateral intrusions ranging from ~20-100 km at subsurface and central levels of the water column showed relative increments in dissipation and diapycnal diffusivity. Therefore, at their boundaries occur the exchange of properties between the NACW and SACW.

How to cite: Valencia, L. P., Rodríguez-Santana, Á., Martínez-Marrero, A., Burgoa, N., Gordo, C., Grisolía, D., and Marrero-Díaz, Á.: The role of turbulence and double-diffusion in the exchange of central waters at the Cape Verde Frontal Zone, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10079, https://doi.org/10.5194/egusphere-egu23-10079, 2023.

X4.109
|
EGU23-13754
|
ECS
|
Kévin Robache, François G. Schmitt, and Yongxiang Huang
The oceans play an important role in the carbon cycle by exchanging CO2 with the atmosphere. These exchanges correspond to the biological pump, where the ocean can be sink or source of atmospheric CO2. Our hypothesis is that CO2 concentration, either atmospheric or oceanic, are chemical tracers being strongly influence by turbulence: we thus study separately their dynamics, and also their difference which is giving indication of the direction of the air-sea CO2 flux.
For this we use a publicly available data set of pCO2 simultaneous measurements at high frequency (typically 3 hours time step) at 40 difference places around the globe, from surface buoys (Sutton et al. 2019). We consider here the scaling properties of these quantities in order to characterize their multi-scale fluctuations, which are considered in the framework of passive or active scalars in turbulence.  For each site, this is done by analyzing temperature, salinity, oceanic (pCO2sw), atmospheric (pCO2air) pCO2 and their difference $\delta = pCO2sw - pCO2air$. Power spectral density are estimated in Fourier space and using Hilbert spectral analysis, with adapted methodologies to take into account the missing data problem. Spectral slopes are recorded and are interpreted in relation with the local climatology, depth and other factors.

How to cite: Robache, K., Schmitt, F. G., and Huang, Y.: Multi-scale analysis of atmospheric and oceanic pCO2 time series and of their difference, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13754, https://doi.org/10.5194/egusphere-egu23-13754, 2023.

X4.110
|
EGU23-12895
Vasileios Bampouris, Emilie Houliez, Francois G. Schmitt, Muriel Crouvoiser, Kostas Kormas, and Urania Christaki
Diatoms have high productivity and are highly influenced by turbulent conditions. We consider here diatoms of the species Pseudo-nitzschia,  which are chain forming. The objective of this work was to show how the turbulent environment affects the growth and the chain forming of these species. For this, cultures of the species Pseudo-nitzschia multiseries and Pseudo-nitzschia fraudulenta were performed in the laboratory and submitted to stationary turbulent conditions, using the Agiturb system developed in the LOG at Wimereux (Le Quiniou et al. 2022). 
In the Agiturb system, the turbulent flow is produced using four contra-rotating agitators that are placed under a cubic tank, generating a statistically stationary, spatially inhomogeneous flow with compression and stretching. The injection of the energy in the flow is produced by 4 stirring bars activated by 4 magnetic stirrers situated at symmetric positions. The cubic tank is almost half-full with 15 liters of sea water. For each experiment, the magnitude of the rotation rate of each agitator was identical, with two agitators rotating clockwise and two anti-clockwise, the same directions being along the diagonal. Different values of the rotation rate were chosen to reach different turbulence levels, characterized by the microscale Reynolds number Rλ going from 130 to 360. These Reynolds numbers correspond to typical values found in the ocean, from the epicontinental zone, to coastal, surf zones and even storm conditions. 
In the experiments, all the other parameters that affect the diatoms’ proliferation were kept the same. Formation and growth of the chains were assessed through microscopy.  P. fraudulenta displayed higher growth than P. multiseries in all turbulence levels except from the control condition (Rλ=0) where the growth was approximately the same. The level of turbulence that was more beneficial for the growth of P. multiseries was the agitated (Rλ= 240) whereas for P. fraudulenta it was for a smaller Reynolds number (Rλ = 160). The chain length were also considered in relation with turbulence level, by considering the probability density of single chains, small chains (2 or 3 cells) and long chains (more than 4 cells). The result was that the predominant form of the cells for both species was the single cells. However, P. multiseries presented higher variations in chain forming throughout the whole experiment than P. fraudulenta. Within this approach, the optimal turbulence level, for growth as well as chain formation, can be assessed for each phytoplankton species.

How to cite: Bampouris, V., Houliez, E., Schmitt, F. G., Crouvoiser, M., Kormas, K., and Christaki, U.: Growth and chain formations of diatoms (Pseudo-nitzschia) under different turbulent conditions: a laboratory analysis, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-12895, https://doi.org/10.5194/egusphere-egu23-12895, 2023.

X4.111
|
EGU23-16131
|
ECS
Deoclécio Valente, Ksenia Guseva, and Ulrike Feudel

Passive dispersal of different materials in ocean flows has gotten considerable attention over the last decade to increase our knowledge about the distribution of seeds plants among islands and coastal areas, the transport of larvae of different organisms between habitats and the transport of litter. Most studies have treated these objects as tracers to investigate distribution patterns and connectivity between different areas. We compare this approach with a study that considers the objects' size and density and discusses the deviation from the tracer approach. To this end, we introduce a two-dimensional kinematic velocity field which allows us to study the connectivity between an arbitrary number of islands located at arbitrary but prescribed positions in an open flow of a given direction. First, the mixing induced by the islands, which act as obstacles in the flow, was accounted for with the inclusion of a von K\'arm\'an vortex street in the wake of each island. Furthermore, we accounted for the size and density of particles approximated as spheres. Finally, we treated the particles as inertial particles experiencing various forces in the flow and computed their trajectories in a given flow field by solving the Maxey-Riley equations. In this way, we have constructed a Lagrangian flow network reflecting the connectivity between islands depending on the properties of the finite-size particles and comparing them with the motion of tracers. We show that the density differences, the flow properties, and the islands' position geometry substantially change the connectivity between islands. That change leads to segregating inertial particles according to their size and density. Nevertheless, the most striking observation is how the tracer transport (independently of geometry) overestimates the probabilities for specific pathways. In fact, the connectivity for inertial particles is much sparser than for tracers, such that certain pathways have extremely low probabilities; they practically do not exist. These results suggest that the transport probabilities can be highly under or overestimated by tracers' often-used approximation of inertial particles.

How to cite: Valente, D., Guseva, K., and Feudel, U.: Lagrangian flow networks for passive dispersal: tracers versus finite-size particles, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16131, https://doi.org/10.5194/egusphere-egu23-16131, 2023.

Posters virtual: Mon, 24 Apr, 16:15–18:00 | vHall ESSI/GI/NP

vEGN.4
|
EGU23-8518
Lev Ostrovsky, Daria Gladskikh, Irina Soustova, and Yuliya Troitskaya

We study the evolution of a turbulent layer in a stratified ocean layer using the theory of unsteady turbulent flows in a stratified fluid developed in [1] and subsequent works. The theory starts from a kinetic equation for turbulence parameters and results in the set of equations involving the mutual transformation of the kinetic and potential energies of turbulence that is shown to significantly affect the overall dynamics of energy exchange between small-scale turbulence and mesoscopic motions and the formation of the upper mixed layer. Besides, this approach allows an account for some important but usually neglected effects such as the dependence of vertical anisotropy of turbulence on stratification. Notably, the transformation between kinetic and potential energies eliminates the restriction on the existence of turbulence at large Richardson numbers.  The results are applied to the analysis of in situ data for turbulence evolution under the action of shear flows and internal waves, obtained in different regions that are significant for climate research, including the upper equatorial ocean. The fundamental role of potential energy in the formation of a turbulent flow is demonstrated.

The work was supported by RSF project No. 23-27-00002.

[1] Ostrovsky L.A., Troitskaya Yu.I. (1987) A model of turbulent transfer and dynamics of turbulence in a stratified shear flow. Izvestiya, Atm. and Oceanic Phys., 23(10), 767-773 (1987).

How to cite: Ostrovsky, L., Gladskikh, D., Soustova, I., and Troitskaya, Y.: Dynamics of small-scale turbulence in the upper ocean under the action of currents and internal waves, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8518, https://doi.org/10.5194/egusphere-egu23-8518, 2023.

vEGN.5
|
EGU23-5170
|
ECS
Yang Gao, Francois Schmitt, Jianyu Hu, and Yongxiang Huang

In the field of wind-wave interaction, scaling features for both wind and waves are often found experimentally. Several theoretical explanations of the scaling law for wind speed and sea surface wave height have been advocated, while a theoretical consideration for the significant wave height (Hs) is still lacking. In this work, we considered a long-term (more than 20 years) and high sampling frequency (about 0.78 Hz) wave profile data collected by buoys provided by Coastal Data Information Program (CDIP). The scaling features for Hs and for the absolute value of the wave profile are evident in the sense of the Fourier power spectrum. The same scaling features were obtained for frequencies below 10-4 Hz, with a scaling exponent close to 3. While the spectrum for wave profile shows a plain-like distribution under the frequency around 0.02 Hz due to the band pass filter. Furthermore, measured Hs is well overlapped with the absolute value of the wave profiles, which indicates that the amplitude modulation is still preserved after band pass filtering, and that might be the reason for the existence for the scaling features for Hs.

How to cite: Gao, Y., Schmitt, F., Hu, J., and Huang, Y.: Scaling analysis of wave profiles, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5170, https://doi.org/10.5194/egusphere-egu23-5170, 2023.

vEGN.6
|
EGU23-16817
|
ECS
|
Varshani Brabaharan, Sachithma Edirisinghe, and Kanchana Bandara

This study presents a comparative assessment to evaluate between two high performance computing languages, Java and FORTRAN for the computation vs. communication trade-off observed during a strategy-oriented copepod model simulation. Here we compared the computational time of (i) sequential processing, (ii) latency (CPU) and (iii) throughput (GPU) oriented designs. CPU based parallelization was accomplished on a 4-core Intel i7 processor with a clock speed of 1.99 GHz. On this CPU, we implemented a (i) fork/join framework design based on work-stealing algorithm in Java and (ii) Open Multi- Processing (OpenMP), a directive-based application programming interface (API) with shared memory architecture on FORTRAN 95. The GPU processing power was leveraged using the CUDA framework in Java and OpenACC API on FORTRAN on a NVIDIA GeForce MX230 with 256 unified pipelines. The simulation time for sequential CPU execution was ca. 41% lower in FORTRAN compared to Java (18 s vs. 25 s). Furthermore, the FORTRAN simulation was ca. 43% lower in execution time in latency-oriented CPU design compared to Java (10s vs. 13s). In the simulation regarding GPU-approach with unified memory space accessibility, Java computation consumed ca. 38% less time than FORTRAN (5s vs. 8s). Unlike FORTRAN, Java is purely an object-oriented language and therefore, object handling is not optimized in GNU compliers of FORTRAN. Nevertheless, memory consumption of FORTRAN can be fine-tuned thereby, decreasing latency unlike in Java. OpenMP API is based on self-consistency, shared memory architecture and its temporary view memory allows threads to cache variables and thereby reduce latency by avoid accessing the memory for each reference of variables unlike the fork/join framework in Java. Furthermore, OpenMP has a thread private memory, which allows efficient synchronization within the code. OpenACC is designed as a high-level platform, which is an independent abstract programming accelerator that offers a pragmatic alternative for accessing GPU programming without much programming effort. Nevertheless, some uses of unified memory space accessibility on NVIDIA GPU’s are better represented in CUDA despite OpenACC having a cache directive. Therefore, its best to investigate the performances of different accelerator models and different programming languages depending on the simulation needs and efficiency targets desired by the model.

Keywords: FORTRAN, Java, OpenMP, OpenACC, high-performance computing, copepods, modelling

How to cite: Brabaharan, V., Edirisinghe, S., and Bandara, K.: Comparison of CPU and GPU parallelization approaches between two programming languages in copepod model simulations, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-16817, https://doi.org/10.5194/egusphere-egu23-16817, 2023.