CR7.3 | Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere
Polar Meteorology and Climate and their Links to the Rapidly Changing Cryosphere
Co-organized by AS1/OS1
Convener: Diana Francis | Co-convener: Michiel van den Broeke
Orals
| Wed, 26 Apr, 16:15–18:00 (CEST)
 
Room L3
Posters on site
| Attendance Tue, 25 Apr, 14:00–15:45 (CEST)
 
Hall X5
Orals |
Wed, 16:15
Tue, 14:00
The polar climate system is strongly affected by interactions between the atmosphere and the cryosphere. Processes that exchange heat, moisture and momentum between land ice, sea ice and the atmosphere, such as katabatic winds, blowing snow, ice melt, polynya formation and sea ice transport, play an important role in local-to-global processes. Atmosphere-ice interactions are also triggered by synoptic weather phenomena such as cold air outbreaks, polar lows, atmospheric rivers, Foehn winds and heatwaves. However, our understanding of these processes is still incomplete. Despite being a crucial milestone for reaching accurate projections of future climate change in Polar Regions, deciphering the interplay between the atmosphere, land ice and sea ice on different spatial and temporal scales, remains a major challenge.

This session aims at showcasing recent research progress and augmenting existing knowledge in polar meteorology and climate and the atmosphere-land ice-sea ice coupling in both the Northern and Southern Hemispheres. It will provide a setting to foster discussion and help identify gaps, tools, and studies that can be designed to address these open questions. It is also the opportunity to convey newly acquired knowledge to the community.

We invite contributions on all observational and numerical modelling aspects of Arctic and Antarctic meteorology and climatology, that address atmospheric interactions with the cryosphere. This may include but is not limited to studies on past, present and future of:
- Atmospheric processes that influence sea-ice (snow on sea ice, sea ice melt, polynya formation and sea ice production and transport) and associated feedbacks,
- The variability of the polar large-scale atmospheric circulation (such as polar jets, the circumpolar trough and storm tracks) and impact on the cryosphere (sea ice and land ice),
- Atmosphere-ice interactions triggered by synoptic and meso-scale weather phenomena such as cold air outbreaks, katabatic winds, extratropical cyclones, polar cyclones, atmospheric rivers, Foehn winds and heatwaves,
- Role of clouds in polar climate and impact on the land ice and sea ice through interactions with radiation,
- Teleconnections and climate indices and their role in land ice/sea ice variability.

Orals: Wed, 26 Apr | Room L3

Chairpersons: Diana Francis, Michiel van den Broeke
16:15–16:20
Antarctica
16:20–16:30
|
EGU23-13864
|
CR7.3
|
ECS
|
solicited
|
On-site presentation
Kristiina Verro, Willem Jan van de Berg, Andrew Orr, Oskar Landgren, and Bert van Ulft

Recently, the climate version (HCLIM) of the regional numerical weather prediction model system ALADIN–HIRLAM of the ACCORD consortium, has been set up for the Arctic and Antarctic domains. Within the PolarRES project, HCLIM will be run, along with other regional climate models such as RACMO, MetUM, and MAR, to study the interactions between the atmosphere, oceans, and sea ice in the Arctic and Antarctic. For the Antarctic Peninsula, kilometre-scale horizontal resolution and non-hydrostatic model dynamics are essential to accurately resolve the complex topography and to capture small-scale processes such as the föhn winds that occur over ice shelves on the Antarctic Peninsula. 

Here, we present an analysis of the föhn event on 27 January 2011 over the Larsen C Ice Shelf, Antarctic Peninsula. The output of the non-hydrostatic HCLIM-AROME model, run at 2.5 km resolution, is evaluated against automatic weather station and radiosonde measurements and simulations of the non-hydrostatic regional climate model MetUM. We analyse the modelled air pressure, near-surface and tropospheric temperatures, wind speed and wind direction, and other atmospheric variables, demonstrating the strengths and weaknesses of the HCLIM-AROME model for this polar application. 

How to cite: Verro, K., van de Berg, W. J., Orr, A., Landgren, O., and van Ulft, B.: New non-hydrostatic polar regional climate model HCLIM-AROME: analysis of the föhn event on 27 January 2011 over the Larsen C Ice Shelf, Antarctic Peninsula, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13864, https://doi.org/10.5194/egusphere-egu23-13864, 2023.

16:30–16:40
|
EGU23-119
|
CR7.3
|
ECS
|
Highlight
|
On-site presentation
Michelle Maclennan, Andrew Winters, Christine Shields, Jonathan Wille, Rebecca Baiman, Léonard Barthelemy, and Vincent Favier

Atmospheric rivers (ARs) are long, narrow bands of warm and moist air that travel poleward from the midlatitudes. While Antarctic atmospheric rivers (ARs) occur only 1-3% of the time over the ice sheet, they are a significant contributor to Antarctic surface mass balance: they contribute 10% on average, and more than 20% locally, of Antarctic precipitation each year. Here we use an Antarctic-specific AR-detection algorithm to identify ARs in MERRA-2 and ERA5 reanalyses and the Community Earth System Model version 2 (CESM2). We use this algorithm to quantify the frequency, location, and precipitation attributed to Antarctic ARs for the period 1980-2014 and use these statistics to identify CESM2 biases relative to MERRA-2 and ERA5. We then apply the AR-detection algorithm to CESM2 for the future period (2015-2100) to examine how the frequency and intensity of ARs, AR-attributed total precipitation, and year-to-year variability in AR precipitation changes in the future under the SSP370 emissions scenario. Our results quantify past and future impacts of ARs on Antarctic annual precipitation, interannual variability, and trends, and ultimately provide an early assessment of future AR-driven changes in Antarctic surface mass balance.

How to cite: Maclennan, M., Winters, A., Shields, C., Wille, J., Baiman, R., Barthelemy, L., and Favier, V.: Antarctic Atmospheric Rivers in the Past and Future Climates, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-119, https://doi.org/10.5194/egusphere-egu23-119, 2023.

16:40–16:50
|
EGU23-8805
|
CR7.3
|
ECS
|
On-site presentation
Eva Bendix Nielsen, Marwan Katurji, Peyman Zawar-Reza, and Hanna Meyer

The McMurdo Dry Valleys (MDVs) in Antarctica have a unique environment classified as a hyper-arid desert with glacier runoff being the main source of liquid water. Previous studies have identified winds as the controlling factor of the climate in this region and especially the occurrence of foehn induced warming. Episodic foehn warming during the austral summer can contribute to above freezing temperatures sustained for multiple days. Years with extreme glacial runoff leading to flooding have been correlated with a higher occurrence of foehn induced warming events. Understanding the temporal availability of meltwater caused by extreme meteorological events is highly important since it is a dependant variable to the functioning of the area’s fragile ecosystem. Synoptic scale circulations in the surrounding Ross Sea Region are a driving factor for the occurrence of foehn warming in the MDVs with the local mesoscale meteorology modulating the spatiotemporal variability of the foehn-induced near-surface warming. AntAir ICE, a newly developed daily mean near surface air temperature dataset with a spatial grid resolution of 1 km2 has proven capable of capturing these mesoscale temperature variabilities for multiple seasons within the complex topography of the MDVs.

 

A case study on the 2nd of January 2020 where the maximum temperature measured in a Lake Vanda automatic weather station was above +9 degrees Celsius with multiple valleys experiencing foehn induced warming, displayed a clear warming signal for the MDVs in AntAir ICE. The atmospheric dynamic analysis from the numerical weather prediction model the Antarctic Mesoscale Prediction System (AMPS) indicated a clear foehn signature. This event was linked to a meso-low located in the Ross Sea which was detected in the climate re-analysis ERA5 mean sea level pressure dataset. By confidently identifying these warming events within the MDVs where there is a relatively high availability of Automatic Weather Stations and AMPS predictions, has allowed for further exploration of extreme sustained warming and potentially foehn induced warming along the terrestrial coastal margin of Antarctica. Using AntAir ICE, warming events during the austral summer season from November to February for the period 2003 to 2021 with sustained daily mean temperatures above freezing for multiple days have been identified for the Ross Sea Region. This study aims at capturing the mesoscale meteorological and climatological variability for multiple seasons within the Ross Sea Region, while linking these extreme warming events to larger scale circulation patterns can allow for understanding local extreme events in context of shifting large scale circulation drivers.

How to cite: Bendix Nielsen, E., Katurji, M., Zawar-Reza, P., and Meyer, H.: Extreme temperature events for the past 19 years in the McMurdo Dry Valleys, Antarctica linked to mesoscale meteorological variability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-8805, https://doi.org/10.5194/egusphere-egu23-8805, 2023.

16:50–17:00
|
EGU23-10042
|
CR7.3
|
ECS
|
Highlight
|
On-site presentation
Rajashree Datta, Adam Herrington, Luke Trusel, David Schneider, Jesse Nusbaumer, and Ziqi Yin

 

The quantity and characteristics of atmospheric rivers over Antarctica, which import heat and moisture towards the continent, are a major source of uncertainty in future sea level rise estimates. We employ a new variable-resolution grid over Antarctica, using CESM2 (VR-CESM2), which balances the extensibility of a GCM with the high computational costs of a high-resolution climate model. This setup uses observed sea surface temperature and sea ice concentration, implements moisture-tagging (linking precipitation to a moisture source region on the globe), and produces high spatial and temporal resolution atmosphere and ice sheet surface outputs, which can be used to detect atmospheric rivers and to estimate their impact.

As a baseline for experiments testing the relative importance of large-scale drivers, we first quantify, over an idealized 10-year period, the global sources of moisture and the portion of total precipitation that reaches the ice sheet during large-scale vs atmospheric river events (and their associated synoptic characteristics). Beyond this baseline, we will use this setup to perform initial test scenarios assessing the relative impact of reduced sea ice combined with enhanced ocean heat at lower latitudes.

How to cite: Datta, R., Herrington, A., Trusel, L., Schneider, D., Nusbaumer, J., and Yin, Z.: Global Sources of Moisture for Atmospheric Rivers over Antarctica, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10042, https://doi.org/10.5194/egusphere-egu23-10042, 2023.

17:00–17:10
|
EGU23-2311
|
CR7.3
|
ECS
|
On-site presentation
Jakob Gunnarsson, Lu Zhou, and Céline Heuzé

Polynyas are recurrent areas of open water or thin ice within the ice pack, which alter the local heat and moisture exchange and high-latitude atmosphere-ocean circulation interannual variability. They are differentiated as coastal (latent heat) or open-ocean (sensible heat) polynya according to their forming location. Especially, coastal polynyas are critical sources of dense water and the formation of Antarctic Bottom Water (AABW) following the brine enrichment of surface waters during sea-ice formation, and easily influenced by the local atmosphere conditions. However, few studies have examined the atmospheric response of open-ocean polynyas on the coastal polynyas given the fact that open-ocean polynyas have capability to re-adjust mesoscale atmosphere circulation. To better understand the surrounding impact of large open-ocean polynya events, output from CMIP6 historical experiment synoptic scale EC-Earth3 is adopted. Our results show an increasing coastal polynya frequency and extent accompanying with more active open-ocean polynya years in the Weddell Sea. The results are explained by near-surface wind speed differences in the coastal regions, which are found statistically significant between more and less active open-ocean polynya years. Furthermore, those intensifications of winds are found in days where easterly-dominated winds north-westerly to north-easterly and easterly to south-easterly cross the open-ocean polynya. Increased near-surface air temperatures as well as a deepening in sea level pressure are also observed during the years with more active open-ocean polynya events. The findings contribute to a better understanding of coastal polynya opening processes, as well as how we might expect to see the different type of polynya interact by their influence and dependence on surrounding atmospheric conditions.

How to cite: Gunnarsson, J., Zhou, L., and Heuzé, C.: The Atmospheric effects of Southern Ocean open-ocean polynyas onto coastal polynyas in EC-Earth3, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-2311, https://doi.org/10.5194/egusphere-egu23-2311, 2023.

Greenland and Arctic
17:10–17:20
|
EGU23-10541
|
CR7.3
|
ECS
|
solicited
|
On-site presentation
Jonathon Preece, Thomas Mote, and Lori Wachowicz

The current period of Arctic amplification has been characterized by a pronounced reduction in high-latitude snow and ice cover that is reflective of rapidly changing thermodynamic environment. Given this change in the local background conditions, it is not surprising that the Greenland Ice Sheet (GrIS) has undergone drastic surface mass loss since the turn of the century; however, research has shown that the recent acceleration of runoff from the GrIS is strongly linked to a shift in the large-scale atmospheric circulation over the same period that has brought more frequent and intense bouts of summer Greenland blocking. While this atmospheric dynamical change may merely be a manifestation of internal variability, there is growing evidence that widespread changes in surface cover and near-surface thermal gradients under Arctic amplification may favor persistent extremes such as the episodes of Greenland blocking that have encouraged melt of the ice sheet.

Here, we explore whether the change in summer atmospheric circulation over Greenland may be a dynamical response to Arctic amplification and attendant snow cover loss. Our results suggests that low North American spring snow cover and a weakened meridional temperature gradient combine to encourage the high-amplitude Omega blocking patterns that we show to have driven the recent trend in summer Greenland blocking. We show that this delayed response to anomalous spring snow cover follows from the snow-hydrological effect, whereby low spring snow cover causes early depletion of soil moisture and anomalously warm surface temperature over eastern North America. The consequent stationary Rossby wave response enforces an anomalous anticyclone, centered over Baffin Bay, that resembles that of high-amplitude Omega blocks and the atmospheric conditions which have promoted melt of the northern GrIS. Together, these results provide evidence that Arctic amplification, and thus anthropogenic climate change, has contributed to recent atmospheric dynamical forcing of GrIS surface mass loss. However, regardless of how strong this link between climate change and atmospheric circulation over Greenland may be, the change in the local thermodynamic environment under Arctic amplification represents a far more robust climate change signal. We also examine the thermodynamic contribution to GrIS surface mass loss using the regional climate model, Modèle Atmosphérique Régional (MAR) associated with blocking circulation. MAR output of surface temperature, meltwater production, and runoff are used to assess the differential impact of blocking events across the ice sheet.

How to cite: Preece, J., Mote, T., and Wachowicz, L.: Examining Atmospheric Dynamical Forcing of Greenland Ice Sheet Surface Mass Loss Within the Context of Arctic Amplification, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10541, https://doi.org/10.5194/egusphere-egu23-10541, 2023.

17:20–17:30
|
EGU23-814
|
CR7.3
|
ECS
|
Highlight
|
On-site presentation
Josep Bonsoms, Marc Oliva, and Juan Ignacio López-Moreno

 

Greenland Ice Sheet (GrIS) snow melting rates have drastically increased since the 1990s, with relevant implications in the entire ecosystem. According to climate projections, extreme weather events will potentially increase in the coming decades over the GrIS. Thus, it is necessary to analyze the past temporal evolution of GrIS extreme melting patterns, as well as their climate drivers. This work analyzes the GrIS summer extreme snow melting spatiotemporal evolution and trends (1990 to 2021). Further, we determine the contribution of synoptic weather types that drive extreme snow melting events. Results evidence that the frequency, magnitude, and the relative contribution of extreme snow melting to the total summer snow melting differs depending on the GrIS sector. Maximum extreme snow melting days per season are observed in western GrIS, whereas minimums are observed in northern sectors. The average extreme snow melting during summer is non-statistically significant increasing in the entire GrIS, which is consistent with the increase of the average snow melting for the same temporal period. Extreme snow melting days as well as the contribution of extreme snow melting to the total snow melting per season show an upward trend, except in the central and northern zones. The analysis of twenty summer circulation weather types reveals that extreme snow melting episodes for most of the GrIS sectors are mainly explained by a few synoptic systems; characterized by a high-pressure system located in central, southern, and eastern GrIS. During these synoptic episodes, stable weather conditions prevail, and the energy available for snow melting is mainly controlled by positive shortwave radiation heat fluxes leading to positive 850 hPa air temperature anomalies. Results presented in this work are relevant for a better understanding of extreme weather events over GrIS within a changing climate context.

How to cite: Bonsoms, J., Oliva, M., and López-Moreno, J. I.: Evaluation of Greenland extreme snow melting patterns and their synoptic drivers, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-814, https://doi.org/10.5194/egusphere-egu23-814, 2023.

17:30–17:40
|
EGU23-3192
|
CR7.3
|
ECS
|
On-site presentation
Sunil N. Oulkar, Parmanand Sharma, Bhanu Pratap, Lavkush Patel, Sourav Laha, and Meloth Thamban

The air temperature lapse rate (TLR) plays an important role in estimating ice and snow melt in high mountain regions. The TLR can vary depending on several factors, including the topography of the catchments and the microclimate. TLR calculations are typically not precise in the Himalayan glacierised regions due to a lack of in-situ observation of meteorological parameters. Therefore, a dense in-situ monitoring network over a high altitudinal gradient is needed to estimate the TLR accurately. We have obtained in-situ measurements of air temperature data from five automatic weather stations (AWS) installed at the best possible locations in the Chandra basin catchment of the semi-arid zone of the western Himalaya from October 2019 to September 2022. The altitudinal range for air temperature measurement varied between ~4000 and 5000 m a.s.l. We utilise the air temperature data to estimate the TLR by regressing the temperature with the corresponding elevations.
Comparing all the estimated TLR, the mean annual value (4.9°C/km) was significantly lower than the standard environmental lapse rate (6.5 °C/km) with substantial seasonality. The maximum TLR (~6.8 °C/km) during the summer is likely due to the high-altitude range and thin air and the presence of cold air pools at higher altitudes. However, the significantly lower TLR (~1.9 °C/km) during winters is likely due to the low air temperature and high moisture content in the region due to western disturbance. Further, we observed strong diurnal variations of TLR, which was highest during the daytime and lowest at night. This study highlighted that the TLR was potentially influenced by the local topography, particularly with higher lapse rates at higher elevations. TLR vary topographically and temporally significantly in the Chandra basin, indicating that the air temperature in this region is more sensitive to climatic variations. The findings of this study will play an important role in glacio-hydrological models, where TLR is one of the essential inputs.

How to cite: Oulkar, S. N., Sharma, P., Pratap, B., Patel, L., Laha, S., and Thamban, M.: Spatio-temporal variability of air temperature lapse rate in the glacierised catchment of the Chandra basin, western Himalaya using in-situ measurements, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3192, https://doi.org/10.5194/egusphere-egu23-3192, 2023.

17:40–17:50
|
EGU23-3971
|
CR7.3
|
ECS
|
On-site presentation
Daniel Topal and Qinghua Ding

The Arctic climate system has been suggested to be ‘en route’ to a new state with seasonally ice-free conditions expected within two-three decades under high-emissions scenarios. Here we show the prospect of its delayed emergence stemming from a consideration of observed and modelled Arctic cryosphere sensitivity to atmospheric circulation changes. While the observed Arctic warming contains a substantial contribution from large-scale circulation, it is not reflected in the modelled forced response. Numerical model simulations with the CESM2 with an active Greenland ice sheet model (CISM2), where model winds are nudged towards the observed state, advocate for the need to have a circulation-based model sensitivity evaluation metric. Hence a recalibration is proposed by matching the warming signals free of atmospheric circulation impacts in observations and models over 1979-2020. This constraint yields a ~decade delay in the projected timing of the first seasonally sea-ice free Arctic and widespread Greenland melting. Accounting for the role of large-scale atmospheric forcing in Arctic climate change offers new perspectives of estimating Arctic sea- and land-ice sensitivity to anthropogenic forcing and understanding the recently emerging issue of some CMIP6 climate models being ‘too hot’.

How to cite: Topal, D. and Ding, Q.: Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-3971, https://doi.org/10.5194/egusphere-egu23-3971, 2023.

17:50–18:00
|
EGU23-13291
|
CR7.3
|
ECS
|
On-site presentation
Max Brils, Peter Kuipers Munneke, and Michiel van den Broeke

Changes in the Greenland ice sheet (GrIS) firn layer may impact its ability to retain meltwater. These changes also need to be accounted for when converting measured ice sheet volume changes to mass changes. With a firn model (IMAU-FDM v1.2G) forced by a regional climate model (RACMO2.3p2), we investigate how the GrIS firn layer depth and pore space have evolved since 1958 in response to variability in the large-scale atmospheric circulation. On interannual timescales, the firn layer’s depth and pore space shows a spatially heterogeneous response to variability in the North Atlantic Oscillation (NAO). Notably, a stronger NAO following the record warm summer of 2012 led the firn layer in the south and east of the ice sheet to regain thickness and pore space after a period of thinning and reduced pore space. The main driving forces behind these changes vary between GrIS sectors: in the southwest, a decrease in melt dominates, whereas in the east an increase in snow accumulation dominates. However, these trends are not uniform across the GrIS, and over the same period, the firn in the northwest continued to lose pore space. The NAO is also stronger in winter than in summer and we observe that this impacts the seasonal cycle of the firn. In the wet southeastern GrIS, most of the snow accumulates during the winter, when firn compaction is slow, amplifying the seasonal cycle in firn depth and pore space. The opposite occurs in other regions, where snowfall peaks in summer or autumn, at the same time as densification and melt, damping the seasonal oscillations in the firn thickness and pore space.

How to cite: Brils, M., Kuipers Munneke, P., and van den Broeke, M.: Spatial response of Greenland’s firn layer to NAO variability, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13291, https://doi.org/10.5194/egusphere-egu23-13291, 2023.

Posters on site: Tue, 25 Apr, 14:00–15:45 | Hall X5

Chairpersons: Diana Francis, Michiel van den Broeke
X5.293
|
EGU23-939
|
CR7.3
The Impacts of Atmospheric Ice Reduction in the Lower Troposphere on the Snow and Ice Processes over the Arctic
(withdrawn)
Tingfeng Dou and Cunde Xiao
X5.294
|
EGU23-5852
|
CR7.3
|
ECS
Mathias Larsen, Ruth H. Mottram, and Peter L. Langen

Projections of present and future ice mass loss of the Greenland Ice Sheet are important for assessing its contribution to future sea-level rise. Critical for the total mass balance is the surface mass balance (SMB) which can be estimated from models, and improving these models can help to further constrain the uncertainties in future projections.

In this project, we use the CARRA reanalysis dataset generated from the HARMONIE-AROME weather forecast system to force an SMB model. The CARRA dataset is remarkable for its 2.5 km horizontal resolution providing unprecedented spatial detail. This is particularly important at the ice-sheet margins where both accumulation and ablation processes are impacted by strong topographic gradients. For example, the greater spatial detail is expected to provide more realistic profiles of accumulation and drying of airmasses from the coast toward the interior, in turn improving the SMB simulation.

The SMB model utilizes a subsurface scheme that consists of columns with 32 layers in the vertical. Driven by the atmospheric input, the SMB model computes all the interactions between the atmosphere and subsurface layers, such as accumulation, melting, percolation, refreezing and runoff. Using this SMB model, we performed a CARRA-driven simulation over the period 1991-2020 on the 2.5 km CARRA grid.

Our initial results show the CARRA-driven SMB model yielding somewhat higher SMB values compared to other published SMB products. The ice sheet-wide totals of accumulation and melt are comparable to other products. However, the location of maximum melt contributions is shifted further towards the interior of the ice sheet in the CARRA-driven simulation. This allows for larger refreezing and contributes significantly to the high SMB seen in the CARRA-driven simulation. Here, we evaluate the SMB model output and driving fluxes against PROMICE data and satellite observations and provide a new updated assessment of Greenland ice sheet SMB.

How to cite: Larsen, M., H. Mottram, R., and L. Langen, P.: CARRA-driven simulation of Greenland Ice Sheet surface mass balance at 2.5 km resolution, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-5852, https://doi.org/10.5194/egusphere-egu23-5852, 2023.

X5.295
|
EGU23-6084
|
CR7.3
|
ECS
Role of Atmospheric rivers changes in shaping Arctic long-term moisture variability
(withdrawn)
Zhibiao Wang, Qinghua Ding, and Renguang Wu
X5.296
|
EGU23-6243
|
CR7.3
|
ECS
Sentia Goursaud Oger, Alexandre Junqueira, and Mathilde Mougeot

Polar lows are intense but short duration maritime cyclones occurring in both hemispheres. In the northern pole, they are mainly located in the Barents and Norwegian seas, with significant damages for coastal populations. So far, a fully understanding of the physical processes at play is still lacking. This is due to the suddenness of such events, as well as a scarcity of meteorological observations in these areas. Infrasounds are sound waves with frequency ranges below the audible domain. It was shown that polar lows can be a source of infrasound. Only one study looked at the infrasound signature for two particular polar lows using data obtained from two stations, in Northern Norway and on Svalbard. Here we show the potentiality of a systematic polar low-induced signature in infrasound data.

Within the frame of the Comprehensive nuclear-test-ban treaty organization, infrasound stations were set up worldwide. One was settled in northern Norway (IS37NO) in 2003 and made fully operational since 2004. Its records consist in a timeseries of sub-daily pressure data, that are processed through a Progressive Multi Channel Cross Correlation method, resulting in variables such as the mean frequencies, azimuths and amplitudes of the detections, and covering 17 complete years (2004-2021). These variables were used to train statistical models to learn the occurrence of polar lows refered in a polar low database. Our models yield very good results, specially in term of precision and recall. They provide a basis for different research opportunities, such as the prediction of polar lows and a deeper comprehension of its climate controls.

How to cite: Goursaud Oger, S., Junqueira, A., and Mougeot, M.: A systematic polar-induced signature in infrasound database highlithed by machine learning models, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-6243, https://doi.org/10.5194/egusphere-egu23-6243, 2023.

X5.297
|
EGU23-10672
|
CR7.3
|
ECS
Marte Hofsteenge, Nicolas Cullen, Jono Conway, Marwan Katurji, Carleen Reijmer, and Michiel van den Broeke

In the McMurdo Dry Valleys (MDV) of Antarctica thrives a unique ecosystem under extreme cold and dry conditions. The limited snowfall that falls on the valley floor quickly sublimates and therefore glacial melt is the most important input to the streams and ice-covered lakes that provide water for the ecosystem. Understanding what drives the variability and changes in glacial meltwater is therefore of great importance to foresee ecosystem changes in a warming world. To assess the temporal variability and meteorological drivers of glacial melt in Taylor Valley, a 22-year surface energy balance (SEB) record is constructed for Taylor and Commonwealth glacier. Automatic weather station observations from the Long-term Ecological Research (LTER) Program in the ablation zone of each glacier are gap filled and completed using locally-tuned parameterisations. The two SEB records are compared to understand the different response of two nearby glaciers (~30 km apart) to local and regional climate forcing. The more melt dominated Commonwealth glacier shows strong seasonal variability in ablation. The closer proximity of Commonwealth glacier to the ocean leads to more rapid changes in albedo as controlled by summer snowfall events. Not only does the presence of snow but also the larger variability in ice albedo compared to Taylor glacier explains much of the seasonal variability in melt. Another major driver of melt are the number of degree days above freezing for both glaciers, which is strongly linked to foehn wind events in Taylor Valley. The further inland Taylor glacier experiences drier and windier conditions and therefore sublimation dominates ablation and melt occurrence. Cloud cover and snowfall in summer switch off glacial melt in summer on both glaciers. We have also used ERA5 fields to study the moisture sources of the MDV precipitation and clouds. This will help us understand how changes in moisture and regional circulation patterns might impact the MDV glaciers and ecosystem in a warming climate.

How to cite: Hofsteenge, M., Cullen, N., Conway, J., Katurji, M., Reijmer, C., and van den Broeke, M.: Comparing the response to meteorological drivers at Taylor and Commonwealth glacier, McMurdo Dry Valleys, Antarctica., EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-10672, https://doi.org/10.5194/egusphere-egu23-10672, 2023.

X5.298
|
EGU23-13345
|
CR7.3
Jason Box, Baptiste Vandecrux, Andreas Ahlstrøm, Robert Fausto, William Colgan, Nanna Karlsson, Signe Andersen, Patrick Wright, Derek Houtz, Daniel McGrath, Nicolas Cullen, Nicolas Bayou, and Konrad Steffen

The Greenland Climate Network (GC-Net) is a collection of automatic weather stations (AWS)  across the Greenland Ice Sheet. The first site was initiated in 1990, and the project has operated almost continuously since 1995, under the leadership of the late Pr. Konrad Steffen. The network consists of 19 long-running weather stations, and 14 AWS sites active under five years. As part of the continuation of the GC-Net by the Geological Survey of Denmark and Greenland (GEUS), the AWS data have recently undergone a reprocessing with new attention to erroneous data filtering, correction and derivation of additional variables: continuous surface height, instrument heights, turbulent heat fluxes.  This new augmented GC-Net level 1 (L1) AWS dataset is now available at https://doi.org/10.22008/FK2/VVXGUT and will continue to be refined. The processing scripts, the latest data and a data-user forum are available at https://github.com/GEUS-Glaciology-and-Climate/GC-Net-level-1-data-processing. In addition to the AWS data, a comprehensive compilation of valuable metadata is provided: maintenance reports, yearly pictures of the stations and the moving station positions through time. This unique dataset provides more than 320 station-years of weather data of improved quality and is made available in compliance under FAIR open data and code principles.

How to cite: Box, J., Vandecrux, B., Ahlstrøm, A., Fausto, R., Colgan, W., Karlsson, N., Andersen, S., Wright, P., Houtz, D., McGrath, D., Cullen, N., Bayou, N., and Steffen, K.: Three-decades of quality controlled Greenland Climate Network (GC-Net) weather station data, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-13345, https://doi.org/10.5194/egusphere-egu23-13345, 2023.

X5.299
|
EGU23-14194
|
CR7.3
|
ECS
|
Florina Schalamon, Jakob Abermann, Sebastian Scher, Andreas Trügler, and Wolfgang Schöner

Understanding the interaction of the atmosphere and cryosphere is critical for predicting the consequences of the rapidly changing climate, particularly in the Arctic. To accurately represent feedback mechanisms between ice and climate in physical models, their thorough quantification at the local scale is required. This study analyses two high-resolution datasets from the Qaamarujup Sermia outlet glacier (West Greenland) that were collected 90 years apart (1929-1931 and 2022 onward). The first is a dataset from Alfred Wegener's last expedition 1929-31, including sub-daily atmospheric observations as well as monthly to (bi-)weekly mass balance measurements. An almost identical monitoring network was installed in 2022 with the goal of observing changes in microclimate and their impact on the glacier. Both periods cover far above-normal air temperatures. The newly installed monitoring network consists of two automatic weather stations (AWS), of which one is placed near the coast and the other one on the ice sheet in approx. 940 m a.s.l.. The station network is supplemented with three temperature and humidity sensors in 50, 270 and 950 m a.s.l. . Further, there are four autonomous ablations sensors and six ablation stakes to quantify the surface mass balance of the glacier. During the field campaign in 2022, 39 vertical drone flights were performed to investigate temperature and humidity profiles of the lowest 400 m of the atmosphere. Preliminary findings show that a surface-based temperature inversion above the glacier surface is present on all days investigated during the study period (2-10.7.2022). An elevated temperature inversion above the ice-free valley part is also present at 50% of the days, with one day reaching further inland than the glacier front. Both types of inversion occur in combination on three out of the eight study days. Comparison of the historic surface mass balance with data from a regional climate model shows reasonable agreement for locations 950 m a.s.l., while the complex topography in the valley is not represented sufficiently. Our results emphasize the value of validation data on a small spatial scale as well as the potential of short-term observations almost a century apart to investigate changing feedback mechanisms of the ice/climate interaction.  

How to cite: Schalamon, F., Abermann, J., Scher, S., Trügler, A., and Schöner, W.: The microclimate and mass balance of Qaamarujup Sermia, West Greenland 1929-2022, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14194, https://doi.org/10.5194/egusphere-egu23-14194, 2023.

X5.300
|
EGU23-16227
|
CR7.3
Topographic Effect of the Antarctic Peninsula on Strong Wind Event at the King Sejong Station
(withdrawn)
Hataek Kwon