EGU24-10062, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10062
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Drivers of changes in catchment evapotranspiration in Central Europe over the past 40 years

Doris Duethmann, Giulia Bruno, and Laurent Strohmenger
Doris Duethmann et al.
  • IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department Ecohydrology and Biogeochemistry, Berlin, Germany (duethmann@igb-berlin.de)

Understanding long-term changes in evapotranspiration and their drivers is crucial due to direct impacts on water availability. Increasing evapotranspiration rates can exacerbate droughts and jeopardise water availability, especially in the summer months with higher water demands. Uncertainties of multi-decadal variations in evapotranspiration at local to regional scale and their drivers are, however, still large. In this data-based study, we derive changes in evapotranspiration from the catchment water balance for a large number of catchments in Central Europe over 1982–2016. We further analyse changes in potential drivers including vegetation and land cover based on a remote-sensing derived vegetation index and a land cover product, water availability based on changes in seasonal precipitation and available energy and atmospheric demand based on changes in reference evapotranspiration. We find wide-spread increases in catchment evapotranspiration until about the year 2000 and only small changes with a decreasing tendency after 2000. The observed variations in regional evapotranspiration are significantly correlated with variations in precipitation, reference evapotranspiration and vegetation activity. High evapotranspiration around 2000 can be related to high values of reference evapotranspiration, precipitation and vegetation activity. Lower evapotranspiration in the early 1980s despite relatively high precipitation is linked to lower values of reference evapotranspiration and vegetation activity, while the halt of further evapotranspiration increases after 2000 despite high values of reference evapotranspiration may be explained by low precipitation. The study contributes to expand our knowledge on the drivers of changes in the water balance in Central Europe over recent decades, which is of great importance for water management in a changing climate.

How to cite: Duethmann, D., Bruno, G., and Strohmenger, L.: Drivers of changes in catchment evapotranspiration in Central Europe over the past 40 years, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10062, https://doi.org/10.5194/egusphere-egu24-10062, 2024.