Using fracture-scarp lineations as kinematic indicators on active normal fault scarps
- 1University of Plymouth, Faculty of Science and Engineering, School of Geography, Earth and Environmental Science, United Kingdom of Great Britain – England, Scotland, Wales (billy.andrews@plymouth.ac.uk)
- 2Birkbeck University of London, London, United Kingdom
To undertake fault-based seismic hazard assessment, we need to accurately identify source faults and assess their slip-rate and kinematics through pertinent data collection. For example, converging slip vectors may be used to deduce whether isolated fault strands are connected at depth. Kinematic (slip vector) data can be collected through offset piercing points or from striations preserved on fault scarps. However, striations are surficial features and may therefore be readily eroded and not preserved or visible on degraded scarps. Tensional fracture networks are ubiquitous on bedrock fault scarps and extend deeper into the scarp, and therefore have a greater preservation potential when compared to striations. In this work we characterise fracture-scarp (F-S) lineation patterns across eight faults in Italy (Central Apennines) and Greece (Perachora Peninsula) to explore how these patterns relate to fault plane geometry and slip-vector.
Various fracture-scarp (F-S) lineation patterns (including sinistral/dextral en-echelon arrays, slip-parallel/-perpendicular fractures, and conjugate sets) are recognised. These patterns show evidence of progressive growth during exhumation. This suggests F-S lineations formed near the surface as the footwall uplifts, with larger features becoming more connected and smaller ones remaining ‘isolated’. The orientations of F-S lineations align within a pure or Riedel shear geometry where the shear sense is related to the rake of the slip vector. We propose that the observed patterns are controlled by fault plane orientation relative to a 3D strain ellipsoid and the progressive reduction of effective normal stress during footwall exhumation. As fractures form under the same stress regime as striations, they can serve as a kinematic indicator even on highly degraded active fault scarps.
How to cite: Andrews, B., Mildon, Z., Lukas Diercks, M., Mitchell, S., Roberts, G., Rodriguez Piceda, C., and Robertson, J.: Using fracture-scarp lineations as kinematic indicators on active normal fault scarps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10122, https://doi.org/10.5194/egusphere-egu24-10122, 2024.