EGU24-10155, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-10155
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of cover crops and conventional and reduced tillage on plant productivity in a bicultural maize-oat cropping system

Giulia De Luca, Eszter Sugar, Nándor Fodor, Tamás Árendás, Péter Bónis, and Renáta Sándor
Giulia De Luca et al.
  • HUN-REN Centre for Agricultural Research, Agricultural Institute, Martonvásár, Hungary

Agricultural crop production plays a key role in satisfying the increasing food demand of our ever-growing population. However, continuous production and certain land use practices often result in the depletion of soil quality. This revelation developed a need to improve soil fertility by enhancing carbon sequestration and storage in our cultivated fields using different methods.

Even though the application of green manure crops can significantly increase the amount of carbon stored in the soil while improving its water storage capacity and protecting the surface from erosion, it is still not a widespread method in Hungary due to usual water shortage during their sowing and germination periods. Furthermore, different soil management techniques can also alter the quality and carbon sequestration potential of our soils. The objective of our study is to determine how soil management and the usage of catch crop cover may affect crop productivity.

A maize-oat bicultural field trial with two different soil management techniques (conventional ploughing and reduced tillage) combined with four types of cover crops (fallow, trefoils-buckwheat mixture, phacelia and oilseed radish) was established in 2020. Changes in soil water content and temperature were continuously monitored at three depths (5, 25 and 45 cm), while leaf area index (LAI) and chlorophyll content (SPAD) were measured periodically. At the end of the vegetation periods measurements regarding crop quality and quantity were executed as well. Furthermore, soil respiration and additional (soil penetration resistance, SWC, VIgreen index) measurements were carried out during the study period, these results will be presented in a separate poster (Effect of cover cropping and soil tillage on soil CO2 emissions).

Our results showed that differences between treatments regarding management techniques and cover crops are more characterized in maize than in oat.

How to cite: De Luca, G., Sugar, E., Fodor, N., Árendás, T., Bónis, P., and Sándor, R.: Impact of cover crops and conventional and reduced tillage on plant productivity in a bicultural maize-oat cropping system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10155, https://doi.org/10.5194/egusphere-egu24-10155, 2024.