Geochemistry and geochronology of the High Arctic Large Igneous Province on Svalbard
- 1Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland (amrsartell@gmail.com)
- 2Department of Geology, Lund University, Lund, Sweden
- 3Department of Arctic Geology, University Centre in Svalbard, Longyearbyen, Norway
- 4Department of Geosciences, University of Oslo, Oslo, Norway
Large Igneous Provinces are defined as magmatic provinces with large magma volumes (> 100,000 km3) emplaced and/or erupted in an intraplate tectonic setting over a vast area within a few Myr, thus having the potential for significant impact on the global climate. The High Arctic Large Igneous Province (HALIP) was emplaced during the Cretaceous. The available ages, ranging between ~140 and 80 Ma, suggests that the magmatism was apparently long-lived and multi-phase. Extrusive and intrusive remnants of the HALIP can be found across the circum-Arctic, specifically in Arctic Canada, Russia, Svalbard, Northern Greenland, and the Arctic Ocean. On Svalbard, the HALIP magmatism is regionally called the Diabasodden Suite. Here, the dolerites have mainly been emplaced as sills at shallow depths and occur all over the archipelago. Despite the relative accessibility of outcrops, the HALIP on Svalbard has been mostly unexplored. As such, available U-Pb geochronology of the Diabasodden Suite is limited, but indicates a shorter time span of 125 – 122 Ma.
Yearly field campaigns since 2020 have resulted in over 150 collected samples from Spitsbergen and Nordaustlandet. This has been accomplished through a collaborative effort, and by strategically targeting outcrops to build a good representative dataset of the Diabasodden Suite. Additionally, a large number of samples have also been taken for a detailed case-study in central Spitsbergen. The dolerite samples are used for whole-rock major and trace element geochemical analysis, U-Pb baddeleyite geochronology and petrological studies. Furthermore, during all field campaigns, high-resolution drone images have also been acquired. These data form the basis for digital outcrop models (DOMs), which are used for thickness measurements of the sills and to put the geochemical data into a 3D perspective. The resulting DOMs are made openly available through the geoscientific database of Svalbard, SvalBox.
Here we present a review of the available geochronology of the HALIP in the circum-Arctic, as well as new data from Svalbard. Specifically, new U-Pb baddeleyite ages of one mafic sill in northern Isfjorden, and an extensive dataset of whole-rock geochemical data from the HALIP on Svalbard to better understand the magmatic history of the HALIP as a whole.
How to cite: Sartell, A. M. R., Beier, C., Söderlund, U., Senger, K., Shephard, G. E., Jørgen-Kjøll, H., and Galland, O.: Geochemistry and geochronology of the High Arctic Large Igneous Province on Svalbard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1021, https://doi.org/10.5194/egusphere-egu24-1021, 2024.